r vieres

1

Motivation

ПП

"SLAM is the process by which a mobile robot can build a map of an environment and at the same time use this map to compute it's own location." [15]

ПП

Learning-Based Differentiable SLAM

Seminar: Robot Perception & Intelligence

Alexander Vieres, Advisor: Sebastián Barbas Laina

Overview on the Task at Hand

Related Works – RAFT [14] Overview

optical flow estimation

1. neural network encoder network: $(HxWx3) \rightarrow (HxWxD)$

[14]

1. neural network encoder network: $(HxWx3) \rightarrow (HxWxD)$

2. correlate each feature of each pixel of image 1 to those of image 2

just a scalar product of two neural network outputs

[14]

- 1. neural network encoder network: (HxWx3) \rightarrow (HxWxD)
- 2. correlate each feature of each pixel of image 1 to those of image 2
- 3. pool the feature map, keep features maps before pooling

				•		•					•																		
and the second s					• •	•	• •				•													• •			• •		
the second second				٠	• •	•	• •	•	•	• •	•	•	•	• •	٠	• •	•	• •	• •	• •	•	•	• •	• •	• •	• •	• •	•	• •
and the second				٠	• •	•	••	•	•	• •	•	•	•	• •	•	• •		•	• •		•	•	• •	• •	•	• •	• •	٠	• •
	• • • • •			٠	• •	•	• •	٠	•	• •	•	•	•	• •	٠	• •	•	• •	• •	• •	•	•	• •	• •	••	• •	• •	•	••
and the second second	• • • • •				••	•	••	•	•	••		•	•	••	٠	• •	•	• •	• •	• •		•	•			• •		•	•••
		1			•••		•••		•	•		•	•	• •	•	• •		• •	••	•••									•••
Image 1	Image	e 2	RAN DIA M		C	€ h	I X	W	× H	Ix	W		•		•	•••	/~	• •		wp		-3	- F	1.	w	VI	1/4	V P	1/14

[U]

- 1. neural network encoder network: $(HxWx3) \rightarrow (HxWxD)$
- 2. correlate each feature of each pixel of image 1 to those of image 2
- 3. pool the feature map, keep features maps before pooling \rightarrow a correlation pyramid

[14]

original position in other image

[14]

ΠП

original position in other image

[14]

ШП

ТΠ

note the increase of reception area estimated flow divided by scale area in radius R (here 2) [14]

original position in other image

note the increase of reception area estimated flow divided by scale area in radius R (here 2) [14] original position in other image

output: concatenate all correlation features

DROID-SLAM [7] – Overview

[7]

add to existing frame graph

add to existing frame graph

add to existing frame graph

DROID-SLAM [7] – backend

- 1. stores history of keyframes
- 2. maintains and updates frame graph
- 3. applies update operator on whole frame graph

updating the frame graph

first add edges for temporally adjacent keyframes

sample edges from a distance matrix (least first) and prevent connections from edges within a distance of two (in optical flow) of each new connection \rightarrow sparse graph \rightarrow **computation!**

Chebyshev distance: $||(i,j) - (k,l)||_{\infty} = \max(|i-k|, |j-l|)$ where i, j, k, I are indexes

DROID-SLAM [7] – Update Operator

DROID-SLAM [7] – Exlanations

Gated Recurrent Unit

DROID-SLAM [7] – DBA Layer

Dense Bundle Adjustment

$$E(G',d') = \sum_{(i,j)\in\varepsilon} \left\| p_{ij}^* - \prod_c \left(G'_{ij} \circ \prod_c^{-1}(p_i,d'_i) \right) \right\|_{\Sigma_{ij}}^2 \quad with \ \Sigma_{ij} = diag(w_{ij})$$

DROID-SLAM [7] – DBA Layer

Dense Bundle Adjustment

solved with local parametrization, linearzization and a set of mathematical tricks (special matrix structure, Schurs complement, ...)

DROID-SLAM [G] – DBA Layer

Dense Bundle Adjustment

local parametrization and solving yields $\Delta \xi$ and Δd

G and d are then updated via retraction on the SE3 manifold $G^{(k+1)} = Exp(\Delta \xi^{(k)}) \circ G^k$ and $d^{k+1} = d^k + \Delta d^k$

where G = poses, d = depths, k = current itation step, $\Delta \xi$ = pose change in tangent space

Special Euclidean 3 Group (SE3)

group of transformations that conists of rotations representable by a 3x3 rotation matrix and a transralation represented by a 3D vector highly non-linear but we can go through the tangent space for small updates and transform them onto SE3 via Lie Algebra

NICE-SLAM [9] – Idea

using differentiable rendering and the learning capabilities of neural networks for SLAM

- use neural implicit surface
- discretize space hierarchically
- distribute the responsibilities
- avoid forgetting learned areas

29

voxel grid

effectively just a storage

neural network

occupancy

Volume Rendering

is something there?

1. shoot a ray camera origin \rightarrow pixel direction

 $p_i = o + d_i * r$ p = point on line, o = camera origin, d = distance from origin, r = direction vector

2. sample at N distances

occupancy

Volume Rendering

is something there?

1. shoot a ray camera origin \rightarrow pixel direction $p_i = c + d_i * r$ p = point on line, c = camera origin, d = distance from origin, r = direction vector

2. sample at N distances

- 3. survival probability $w_i = o_{p_i} \prod_{j=1}^{i-1} (1 o_{p_j})$
- 4. depth and color can be rendered as $\widehat{D} = \sum_{i=1}^{N} w_i * d_i$ (depth) $\widehat{I} = \sum_{i=1}^{N} w_i^f * c_i$ (color)

Done (?)

NICE-SLAM [9] – Mapping

building a loss function (L1)

M = number of samples

[10]

December 3, 2024

[9]

37

NICE-SLAM [9] – Mapping

backpropagate loss to grid parameters and the learnable parameters of the color network

Training Schedule

1. optimize coarse and mid-level features on $\mathcal{L}_{g}^{c/f}$

2. optimize mid and fine-level features together on \mathcal{L}_{g}^{f}

3. perform local bundle adjustment (see earlier) to jointly optimize all grids, color decoder and camera extrinsic parameters on $\lambda_p \mathcal{L}_p + \mathcal{L}_g^f + \mathcal{L}_g^c$, λ_p = weighting factor

Seminar RPI – Alexander Vieres

NICE-SLAM [9] – Tracking

building another loss function

Geometric Loss weighted by inverse variance

$$L_{g_{var}} = \frac{1}{M_t} \sum_{m=1}^{M_t} \frac{|D_m - \widehat{D_m^c}|}{\sqrt{\widehat{D_{var}^c}}} + \frac{|D_m - \widehat{D_m^f}|}{\sqrt{\widehat{D_{var}^f}}}$$

$$M_t = \text{number ob samples for tracking}$$

Depth Variance
$$\widehat{D_{var}} = \sum_{i=1}^{N} w_i * (\widehat{D} - d_i)^2$$

+ **backpropagate** with regards to translation and rotation of the camera **Photometric Loss with weighting factor** $\lambda_{pt} \mathcal{L}_p = \frac{\lambda_{pt}}{M} \sum_{m=1}^{M} |I_m - \widetilde{I_m}|$ _{put} = weighting factor for photometric loss

December 3, 2024

NICE-SLAM [9] – task split

ΠП

coarse grid – give some info on occupancy, some info on partially unseen areas

medium grid – focus on basic structure, provide general shape of environment

fine grid – focus on high level details, improve the medium grid

color grid – provide additional signals for tracking

Results – NICE-SLAM [9]

	fr1/desk	fr2/xyz	fr3/office
iMAP [47]	4.9	2.0	5.8
iMAP* [47]	7.2	2.1	9.0
DI-Fusion [16]	4.4	2.3	15.6
NICE-SLAM	2.7	1.8	3.0
BAD-SLAM [43]	1.7	1.1	1.7
Kintinuous [60]	3.7	2.9	3.0
ORB-SLAM2 [27]	1.6	0.4	1.0

TUM-RGB-D

[9] + table references at [9]

- evaluated on five datasets
- very good performance for techniques using neural implicit representation
- far from state of the art
- no failures reported
- appears very selective in the experiments (indoor)

[9]

[10]

	FLOPs [$\times 10^3$] \downarrow	Tracking [ms]↓	Mapping [ms]↓
iMAP [47]	443.91	101	448
NICE-SLAN	1 104.16	47	130
Runtime Comparison	[9]	1 + table ref	erences at [C

Results – DROID-SLAM [7]

	360	desk	desk2	floor	plant	room	rpy	teddy	xyz	avg
ORB-SLAM2 [32]	X	0.071	Х	0.023	Х	Х	Х	Х	0.010	-
ORB-SLAM3 [5]	X	0.017	0.210	Х	0.034	Х	Х	Х	0.009	-
DeepTAM ¹ [60]	0.111	0.053	0.103	0.206	0.064	0.239	0.093	0.144	0.036	0.116
TartanVO ² [54]	0.178	0.125	0.122	0.349	0.297	0.333	0.049	0.339	0.062	0.206
DeepV2D [48]	0.243	0.166	0.379	1.653	0.203	0.246	0.105	0.316	0.064	0.375
DeepV2D (TartanAir)	0.182	0.652	0.633	0.579	0.582	0.776	0.053	0.602	0.150	0.468
DeepFactors [9]	0.159	0.170	0.253	0.169	0.305	0.364	0.043	0.601	0.035	0.233
Ours	0.111	0.018	0.042	0.021	0.016	0.049	0.026	0.048	0.012	0.038

TUM-RGB-D

[7] + table references at [7]

8-30 fps reported depending on camera speed

[11]

- evaluated on in- and outdoor datasets
- very robust, even on noisy inputs, bad lighting etc.
- outperformed state of the art, today still in top 3 of ETH3D-SLAM Benchmark [12]
- depending on application real-time capable

Personal Thoughts

ПП

DROID

runtime

ressources (electricity, memory)

great performance

determinism and explainability

dependency on training data

scaling

NICE

runtime

ressources

dependent on noisy RGB-D

determinism and explainability

quality

anything big scale problematic

Future Work

- 1. discard non-essential images after loop closure \rightarrow memory efficiency
- 2. use depth as a 4th dimension when RGB-D images are available \rightarrow leverage the information available
- 3. combine with a classic approach to provide explainability \rightarrow practical usage
- 4. denoising diffusion nets as powerful prior to estimate (guess) the area not yet seen → increase chance of finding track again if lost
- 5. use non linear motion model for better tracking of highly dynamic objects

- learning based differentiable SLAM can have outstanding performance
- issues with resource requirements
- neural network based feature extraction has a lot of potential for SLAM

Discussion

Thank you for your Attention

References

[1] https://www.synaos.com/integrations/mobile-robot-finder/abb-amr-t702 (01.12.2024)

[2] Tranzatto, Marco, et al. "Cerberus: Autonomous legged and aerial robotic exploration in the tunnel and urban circuits of the darpa subterranean challenge." arXiv preprint arXiv:2201.07067 (2022): 3

[3] https://commons.wikimedia.org/wiki/File:Stanley2.JPG (01.12.2024)

[4] Dewan, Abhishek, et al. "Advancement in SLAM Techniques and Their Diverse Applications." 2023 12th International Conference on System Modeling & Advancement in Research Trends (SMART). IEEE, 2023.

[5] https://learnopencv.com/monocular-slam-in-python/ (01.12.2024)

[6] https://wiki.seeedstudio.com/a_loam/

[7] Teed, Zachary, and Jia Deng. "Droid-slam: Deep visual slam for monocular, stereo, and rgb-d cameras." Advances in neural information processing systems 34 (2021): 16558-16569.

[8] Xu, Miao, Hongfei Liu, and Hongbo Yang. "A deep learning based multi-block hybrid model for bike-sharing supply-demand prediction." IEEE Access 8 (2020): 85826-85838.

[9] Zhu, Zihan, et al. "Nice-slam: Neural implicit scalable encoding for slam." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022.

- [10] <u>https://pengsongyou.github.io/nice-slam</u> (01.12.2024)
- [11] https://www.youtube.com/watch?v=GG78CSISHSA (01.12.2024)
- [12] https://www.eth3d.net/slam_benchmark (01.12.2024)
- [13] https://www.youtube.com/watch?v=3bkjse1keSA&ab_channel=RcLab

[14] Teed, Zachary, and Jia Deng. "Raft: Recurrent all-pairs field transforms for optical flow." Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16. Springer International Publishing, 2020.

[15] Whyte, H. Durrant. "Simultaneous localisation and mapping (SLAM): Part I the essential algorithms." Robotics and Automation Magazine (2006).