

Implicit Mapping at Large Scale

Sven Steckler

München, 2. Dezember 2024

Implicit Mapping at Large Scale

Motivation

Related Work

Method description

Experiments and results

Personal Comments

Future Work

Summary

Motivation

1. Problem Statement

- Large-scale implicit mapping is critical in fields like virtual/augmented reality (VR/AR), robotics, and autonomous navigation
- Traditional methods struggle with scalability, computational efficiency, and detail preservation

Related Work

1. Mega-NeRF:

- Uses Neural Radiance Fields (NeRF) as basis
- Goal: Scaling NeRF up to large scenes and reducing training time to a minimum
- Possible Usage: Search and Rescue

2. SHINE-Mapping:

- Usage of an Octree-based structure with a shared MLP
- Goal: Cover large areas based on 3D LiDAR for localization and navigation
- Possible Use Cases: Mobile Robots (e.g. self-driving cars)

Method description: Mega-NeRF

1. NeRF:

- Scene representation with continuous volumetric radiance field
- Encodes the scene in the weights of an MLP
- Through Volume Rendering Occlusion
- Positional Encoding for finer structures

Method description: Mega-NeRF

2. Architecture:

- Scenes decomposed into cells
- Each cell has its own NeRF
- Additional Usage of appearance embedding
- Centroid of each cell through tessellating
- Decomposition of the scene in foreground and background, both modelled by different Mega-NeRFs
- Usage of NeRF++ volume parametrization and raycasting formulation Adjustments: Ellipsoid sphere and camera pose to avoid unnecessary querying

Method description: Mega-NeRF

3. Training:

- Each Mega-NeRF submodule trained parallel
- Limit trainsets to relevant pixels \rightarrow 10x reduction of training time
- Overlap factor 15% \rightarrow avoid visual artifacts at boundaries
- Data Pruning after NeRFs get basic understanding of geometry data

4. Interactive Rendering:

- Caching of whole scene no option for this scene scales
- Precomputing a cache of opacity and color \rightarrow renderer only needs to do fine adjustments
- Refined Octree gives an estimated scene geometry \rightarrow ray sampling near surfaces of interest

Sven Steckler | Robot Perception & Intelligence | 02.12.2024

(a) Fixed Octree

(b) Dynamically Expanded Octree

(c) Reused Octree (next frame)

Method description: SHINE

1. Architecture:

- Octree-based map inspired by NGLOD
- Storing LiDAR Data
- Using multiple Resolution Levels to capture finer features
- Difference to NGLOD: Using Hash Tables for feature storage
- Using Morton Code for fast accessing
- SDF values inferred through a neural network (Using all resolution levels)
- Pretrained fixed MLP if mapping incrementally, for batch mode not necessary

Method description: SHINE

2. Training:

- Backpropagation possible because whole process is differentiable
- Can directly use range output of the LiDAR data as supervision
- Using sigmoid function before loss function
- Base Loss-Func.: Binary-Cross-Entropy
- Eikonal Loss for more Accuracy
- Regularization Loss against catastrophic forgetting

$$L_{\text{bce}} = l_i \cdot \log(o_i) + (1 - l_i) \cdot \log(1 - o_i)$$
$$\lambda_e \underbrace{\left(\left\| \frac{\partial f_\theta(\boldsymbol{x}_i)}{\partial \boldsymbol{x}_i} \right\| - 1 \right)^2}_{\text{Eikonal loss}}$$
$$L_{\text{r}} = \sum_{i \in A} \Omega_i (\theta_i^t - \theta_i^*)^2$$
$$\Omega_i = \min\left(\Omega_i^* + \sum_{k=1}^N \left\| \frac{\partial L_{\text{bce}}(\boldsymbol{x}_k, l_k)}{\partial \theta_i} \right\|, \Omega_m \right)$$

 Ω_i

 $L_{\text{incr}} = L_{\text{hce}} + \lambda_e L_{\text{eikonal}} + \lambda_r L_r$

Experiments and results: Mega-NeRF

Datasets:

- Mill 19 (Rubble, Building): Scenes of a former industrial complex
- Quad6k: SFM collected from Cornell University Arts Quad
- UrbanScene 3D: Scenery of a large urban Environment

Metrics:

- Peak Signal-to-Noise Ratio
- Structural Similarity Index
- Learned Perceptual Image Patch Similarity

Experiments and results: Mega-NeRF

	Mill 19 - Building				Mill	19 - Rubb	le		Quad 6k			
	↑PSNR	↑SSIM	↓LPIPS	↓Time (h)	↑PSNR	↑SSIM	↓LPIPS	↓Time(h)	↑PSNR	↑SSIM	↓LPIPS	↓Time(h)
NeRF	19.54	0.525	0.512	59:51	21.14	0.522	0.546	60:21	16.75	0.559	0.616	62:48
NeRF++	19.48	0.520	0.514	89:02	20.90	0.519	0.548	90:42	16.73	0.560	0.611	90:34
SVS	12.59	0.299	0.778	38:17	13.97	0.323	0.788	37:33	11.45	0.504	0.637	29:48
DeepView	13.28	0.295	0.751	31:20	14.47	0.310	0.734	32:11	11.34	0.471	0.708	19:51
MVS	16.45	0.451	0.545	32:29	18.59	0.478	0.532	31:42	11.81	0.425	0.594	18:55
Mega-NeRF	20.93	0.547	0.504	29:49	24.06	0.553	0.516	30:48	18.13	0.568	0.602	39:43
UrbanScene3D - Residence				UrbanScene3D - Sci-Art				UrbanScene3D - Campus				
	↑PSNR	↑SSIM	↓LPIPS	↓Time (h)	↑PSNR	↑SSIM	↓LPIPS	↓Time(h)	↑PSNR	↑SSIM	↓LPIPS	↓Time(h)
NeRF	19.01	0.593	0.488	62:40	20.70	0.727	0.418	60:15	21.83	0.521	0.630	61:56
NeRF++	18.99	0.586	0.493	90:48	20.83	0.755	0.393	95:00	21.81	0.520	0.630	93:50
SVS	16.55	0.388	0.704	77:15	15.05	0.493	0.716	59:58	13.45	0.356	0.773	105:01
DeepView	13.07	0.313	0.767	30:30	12.22	0.454	0.831	31:29	13.77	0.351	0.764	33:08
MVS	17.18	0.532	0.429	69:07	14.38	0.499	0.672	73:24	16.51	0.382	0.581	96:01
Mega-NeRF	22.08	0.628	0.489	27:20	25.60	0.770	0.390	27:39	23.42	0.537	0.618	29:03

\rightarrow Acceleration in Training time

 \rightarrow Also is outperforming the other Methods

Experiments and results: Mega-NeRF

best second-best	Mill 19					Quad 6k				UrbanScene3D					
				Preprocess	Render				Preprocess	Render				Preprocess	Render
	↑PSNR	↑SSIM	↓LPIPS	Time (h)	Time (s)	↑PSNR	↑SSIM	↓LPIPS	Time (h)	Time (s)	↑PSNR	↑SSIM	↓LPIPS	Time (h)	Time (s)
Mega-NeRF-Plenoctree	16.27	0.430	0.621	1:26	0.031	13.88	0.589	0.427	1:33	0.010	16.41	0.498	0.530	1:07	0.025
Mega-NeRF-KiloNeRF	21.85	0.521	0.512	30:03	0.784	20.61	0.652	0.356	27:33	1.021	21.11	0.542	0.453	34:00	0.824
Mega-NeRF-Full	22.96	0.588	0.452	-	101	21.52	0.676	0.355	-	174	24,92	0.710	0.393	-	122
Plenoxels	19.32	0.476	0.592	-	0.482	18.61	0.645	0.411	-	<u>0.194</u>	20.06	0.608	0.503	-	0.531
Mega-NeRF-Initial	17.41	0.447	0.570	1:08	0.235	14.30	0.585	0.386	1:31	0.214	17.22	0.527	0.506	1:10	0.221
Mega-NeRF-Dynamic	<u>22.34</u>	0.573	<u>0.464</u>	1:08	3.96	20.84	0.658	0.342	1:31	2.91	23.99	0.691	0.408	<u>1:10</u>	3.219

\rightarrow Best in Preprocessing for Mill 19 and Quad 6k

\rightarrow Provides the best balance between quality and rendering time

	Mill 19				Quad	6k	1	UrbanScene3D		
	↑PSNR	↑SSIM	↓LPIPS	↑PSNR	↑SSIM	↓LPIPS	↑PSNR	↑SSIM	↓LPIPS	
Mega-NeRF-no-embed	20.42	0.500	0.561	16.16	0.544	0.643	19.45	0.587	0.545	
Mega-NeRF-embed-only	21.48	0.494	0.566	17.91	0.559	0.638	22.79	0.611	0.537	
Mega-NeRF-no-bounds	22.14	0.534	0.522	18.02	0.565	0.616	23.42	0.636	0.511	
Mega-NeRF-dense	21.63	0.504	0.551	17.94	0.562	0.627	22.44	0.605	0.558	
Mega-NeRF-joint	21.10	0.490	0.574	17.43	0.560	0.616	21.45	0.595	0.567	
Mega-NeRF	22.34	0.540	0.518	18.08	0.566	0.602	23.60	0.641	0.504	

 \rightarrow Each addition (e.g. embeddings, unit sphere) has a positive impact on the performance

Sven Steckler | Robot Perception & Intelligence | 02.12.2024

Experiments and results: SHINE

Datasets:

- MaiCity: Sequence of 64 beam noise-free simulated LiDAR scans of urban scenario
- Newer College dataset: LiDAR measurements from Oxford University
- UrbanScene 3D: Scenery of a large urban Environment

Metrics:

- Accuracy
- Completeness
- Memory efficiency

Experiments and results: SHINE

Method	Comp. \downarrow	Acc. \downarrow	$\textbf{C-l1}\downarrow$	$\textbf{Comp.Ratio} \uparrow$	$\textbf{F-score} \uparrow$
Voxblox	7.1	1.8	4.8	84.0	90.9
VDB Fusion	6.9	1.3	4.5	90.2	94.1
Puma	32.0	1.2	16.9	78.8	87.3
Ours + DR	3.3	1.5	3.7	94.0	90.7
Ours	3.2	1.1	2.9	95.2	95.9

Method	Comp. \downarrow	Acc. \downarrow	C-l1 ↓	Comp.Ratio ↑	F-score \uparrow
Voxblox	14.9	9.3	12.1	87.8	87.9
VDB Fusion	12.0	6.9	9.4	91.3	92.6
Puma	15.4	7.7	11.5	89.9	91.9
Ours + DR	11.4	11.1	11.2	92.5	86.1
Ours	10.0	6.7	8.4	93.6	93.7

→Outperforming State-of-the-Art Methods

Sven Steckler | Robot Perception & Intelligence | 02.12.2024

Personal comments

Strengths:

- SHINE-Mapping:
 - Excellent trade-off between scalability and accuracy
 - Effective use of hierarchical representation
- Mega-NeRF:
 - Pioneering parallelism for NeRFs
 - Highly practical for large-scale applications like city modeling

Personal comments

Weaknesses:

- SHINE-Mapping:
 - Potential challenges in fine-tuning hierarchical levels for diverse datasets
- Mega-NeRF:
 - Overlapping regions might introduce artifacts or redundancies

Future Work

Mega-NeRF:

- Explore applications in AR/VR where real-time rendering is critical
- Dynamic Scenes

Future Work

SHINE-Mapping:

- Explore integration with real-time mapping systems for robotics
- Improve adaptability for dynamic scenes (e.g., moving objects)
- Extend hierarchical representations to handle semantic information

Summary

- Both SHINE-Mapping and Mega-NeRF address critical bottlenecks in scaling 3D scene representation methods
- SHINE-Mapping introduces sparse hierarchical representations for efficient mapping
- **Mega-NeRF** demonstrates effective use of parallel processing for large-scale NeRFs
- These methods pave the way for broader applications in AR/VR, autonomous vehicles, and large-scale simulations

References

- "NeRF: Neural Radiance Field in 3D Vision, Introduction and Review" Kyle (Yilin) Gao, Graduate Student Member, IEEE, Yina Gao, Hongjie He, Dening Lu, Linlin Xu, Member, IEEE, Jonathan Li, Fellow, IEEE
- Zhong, Xingguang, et al. "SHINE-Mapping: Large-Scale 3D Mapping Using Sparse Hierarchical Implicit Neural Representations." arXiv preprint arXiv:2210.02299 (2022).
- Turki, Haithem, Deva Ramanan, and Mahadev Satyanarayanan. "Mega-nerf: Scalable construction of large-scale nerfs for virtual fly-throughs." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.
- https://www.youtube.com/watch?v=CRIN-cYFxTk
- "NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections" Ricardo Martin-Brualla*, Noha Radwan*, Mehdi S. M. Sajjadi*, Jonathan T. Barron, Alexey Dosovitskiy, and Daniel Duckworth
- "Soft Truncation: A Universal Training Technique of Score-based Diffusion Model for High Precision Score Estimation" Dongjun Kim1 Seungjae Shin 1 Kyungwoo Song 2 Wanmo Kang 1 II-Chul Moon 1 3
- https://www.youtube.com/watch?v=0cJZn_hV2Ms