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Motivation

1. Problem Statement

• Large-scale implicit mapping is critical in fields like virtual/augmented reality (VR/AR), 

robotics, and autonomous navigation

• Traditional methods struggle with scalability, computational efficiency, and detail preservation
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Related Work

1. Mega-NeRF:

− Uses Neural Radiance Fields (NeRF) as basis

− Goal: Scaling NeRF up to large scenes and reducing training time to a minimum

− Possible Usage: Search and Rescue

2. SHINE-Mapping:

− Usage of an Octree-based structure with a shared MLP

− Goal: Cover large areas based on 3D LiDAR for localization and navigation

− Possible Use Cases: Mobile Robots (e.g. self-driving cars)
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Method description: Mega-NeRF

1. NeRF:

• Scene representation with continuous volumetric radiance field

• Encodes the scene in the weights of an MLP

• Through Volume Rendering Occlusion 

• Positional Encoding for finer structures
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Method description: Mega-NeRF

2. Architecture:

• Scenes decomposed into cells

• Each cell has its own NeRF

• Additional Usage of appearance embedding

• Centroid of each cell through tessellating

• Decomposition of the scene in foreground and background, both modelled by different Mega-

NeRFs

• Usage of NeRF++ volume parametrization and raycasting formulation

Adjustments: Ellipsoid sphere and camera pose to avoid unnecessary querying
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NeRF++ <-> Mega-NeRF
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Method description: Mega-NeRF
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3. Training:

• Each Mega-NeRF submodule trained parallel

• Limit trainsets to relevant pixels → 10x reduction of training time

• Overlap factor 15% → avoid visual artifacts at boundaries

• Data Pruning after NeRFs get basic understanding of geometry data

4. Interactive Rendering:

• Caching of whole scene no option for this scene scales

• Precomputing a cache of opacity and color → renderer only needs to do fine adjustments

• Refined Octree gives an estimated scene geometry → ray sampling near surfaces of interest



Machine Learning for Robotics
TUM School of Computation, Information and Technology
Technical University of Munich

Method description: SHINE

1. Architecture:

• Octree-based map inspired by NGLOD

• Storing LiDAR Data

• Using multiple Resolution Levels to capture finer features

• Difference to NGLOD: Using Hash Tables for feature storage

• Using Morton Code for fast accessing

• SDF values inferred through a neural network (Using all resolution levels)

• Pretrained fixed MLP if mapping incrementally, for batch mode not necessary
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Method description: SHINE

2. Training:

• Backpropagation possible because whole process is differentiable

• Can directly use range output of the LiDAR data as supervision

• Using sigmoid function before loss function

• Base Loss-Func.: Binary-Cross-Entropy

• Eikonal Loss for more Accuracy

• Regularization Loss against catastrophic forgetting
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Experiments and results: Mega-NeRF

Datasets:

• Mill 19 (Rubble, Building): Scenes of a former industrial complex

• Quad6k: SFM collected from Cornell University Arts Quad

• UrbanScene 3D: Scenery of a large urban Environment

Metrics:

• Peak Signal-to-Noise Ratio

• Structural Similarity Index

• Learned Perceptual Image Patch Similarity
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Experiments and results: Mega-NeRF
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→Acceleration in Training time

→Also is outperforming the other Methods
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Experiments and results: Mega-NeRF
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→Best in Preprocessing for Mill 19 and Quad 6k

→Provides the best balance between quality and rendering time

→Each addition (e.g. embeddings, unit sphere) has a positive impact on the performance



Machine Learning for Robotics
TUM School of Computation, Information and Technology
Technical University of Munich

Experiments and results: SHINE

Datasets:

• MaiCity: Sequence of 64 beam noise-free simulated LiDAR scans of urban scenario

• Newer College dataset: LiDAR measurements from Oxford University

• UrbanScene 3D: Scenery of a large urban Environment

Metrics:

• Accuracy

• Completeness

• Memory efficiency
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Experiments and results: SHINE
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→Outperforming 

State-of-the-Art Methods
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Personal comments
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Strengths:
• SHINE-Mapping:

− Excellent trade-off between scalability and accuracy

− Effective use of hierarchical representation

• Mega-NeRF:

− Pioneering parallelism for NeRFs

− Highly practical for large-scale applications like city modeling
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Personal comments

Weaknesses:

• SHINE-Mapping:

− Potential challenges in fine-tuning hierarchical levels for diverse datasets

• Mega-NeRF:

− Overlapping regions might introduce artifacts or redundancies
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Future Work
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Mega-NeRF:

• Explore applications in AR/VR where real-time rendering is critical

• Dynamic Scenes
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Future Work
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SHINE-Mapping:
• Explore integration with real-time mapping systems for robotics

• Improve adaptability for dynamic scenes (e.g., moving objects)

• Extend hierarchical representations to handle semantic information
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Summary

• Both SHINE-Mapping and Mega-NeRF address critical bottlenecks in scaling 3D scene 

representation methods

• SHINE-Mapping introduces sparse hierarchical representations for efficient mapping

• Mega-NeRF demonstrates effective use of parallel processing for large-scale NeRFs

• These methods pave the way for broader applications in AR/VR, autonomous vehicles, and 

large-scale simulations
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