

Efficient / Real-Time Volumetric Mapping

Daniel Ostermeier

M.Sc. Robotics, Cognition, Intelligence

02. December 2024

Motivation

<image>

https://www.intelrealsense.com/depth-camera-d435i/

ТЛП

Motivation

Pan et al. 2022

Funk et al. 2021

3D Scene Representations

Point Cloud

Elevation Map

Multi-Level Surface Map Occupancy Grid

Volumetric Representations

Challenges:

- Speed:
 - Frame integration
 - Collision detection/sampling
 - Simultaneous exploration & mapping
- State representation:
 - Free space
 - Occupied space
 - Unknown space

Volumetric Representations

Funk et al. 2021

Challenges:

- Accuracy:
 - Robustness to sensor noise
 - Large-Scene representations
 - Detail preservation
- Memory-Efficiency: Voxel-Size?
 - O(n³) scaling for naive implementation

ТШП

OctoMap(-RT)

- Probabilistic occupancy map
- Unknown Space: Implicit representation
- Slow pointcloud insertion
- No simultaneous mapping & exploration
- Rapidly improved by recent (-RT) paper
 - GPU accelerated ray tracing
 - Claims up to 40x faster integration

Hornung et al. (2013): OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees. Autonomous Robots, pp. 189–206.

Min et al. (2023): OctoMap-RT: Fast Probabilistic Volumetric Mapping Using Ray-Tracing GPUs. Robotics and Automation Letters, pp. 5696–5703

UFOMap

- Octree representation
- Unknown space: explicit representation
- Ray tracing: Coarser strategies
- More efficient memory usage
- Faster insertion & accessing

Duberg et al. (2020): UFOMap: An Efficient Probabilistic 3D Mapping Framework That Embraces the Unknown. Robotics and Automation Letters, pp. 6411–6418.

OctoMap

UFOMap

VDB Mapping/Fusion Image: state structure Image: state structure Image: state structure

Besselmann et al. (2021): VDB-Mapping: A High Resolution and Real-Time Capable 3D Mapping Framework for Versatile Mobile Robots International Conference on Automation Science and Engineering, pp. 448–454.

Vizzo et al. (2022): VDBFusion: Flexible and Efficient TSDF Integration of Range Sensor Data. *Sensors.*

VDB Mapping/Fusion

- OpenVDB tree-datastructure
 - Direct access via bitmasks
 - Efficient insertion
 - Fixed tree height
 - Similar to memory footprint of OctoMap
- VDBFusion: TSDF integration
 - Non-Probabilisitic
- VDB-Mapping: Occupancy grid

VDBFusion: Space carving is optional (but expensive)

Besselmann et al. (2021): VDB-Mapping: A High Resolution and Real-Time Capable 3D Mapping Framework for Versatile Mobile Robots International Conference on Automation Science and Engineering, pp. 448–454.

Vizzo et al. (2022): VDBFusion: Flexible and Efficient TSDF Integration of Range Sensor Data. Sensors.

Voxblox/Voxfield

- TSDF + ESDF
- Voxel-hashing backbone
- "Grouped Raycasting"
- Weighted TSDF integration
- Voxfield: Non-Projective ESDF

Pan et al. (2022): Voxfield: Non-Projective Signed Distance Fields for Online Planning and 3D Reconstruction. International Conference on Intelligent Robots and Systems, pp. 5331–5338.

Oleynikova et al. (2017): Voxblox: Incremental 3D Euclidean Signed Distance Fields for On-Board MAV Planning. International Conference on Intelligent Robots and Systems, pp. 1366-1373.

ESDF 2.0m

-0.2m

Voxblox/Voxfield

Pan et al. (2022): Voxfield: Non-Projective Signed Distance Fields for Online Planning and 3D Reconstruction. International Conference on Intelligent Robots and Systems, pp. 5331–5338.

Oleynikova et al. (2017): Voxblox: Incremental 3D Euclidean Signed Distance Fields for On-Board MAV Planning. International Conference on Intelligent Robots and Systems, pp. 1366-1373.

Supereight 2

- Aimed at higher resolutions than Voxblox/OctoMap
- Weighted probabilistic occupancy map
 - No costly ESDF for planning required

Heuristic (e.g., UFOMap) vs. Adaptive-Resolution Volume Allocation

Funk et al. (2021): Multi-Resolution 3D Mapping With Explicit Free Space Representation for Fast and Accurate Mobile Robot Motion Planning. Robotics and Automation Letters, pp. 3553–3560.

Wavemap

- Probabilistic occupancy map
- Only stores differences between resolution levels
- Coherent representation by construction
- Wavelet coefficients stored in Octree

Reijgwart et al. (2023): Efficient volumetric mapping of multi-scale environments using wavelet-based compression. Robotics: Science and Systems.

Wavemap: Experiment

ТШТ

Duberg et al. 2020

Evaluation: Efficiency

Reijgwart et al. 2023

		Memory (MB)		Time (s)		
Res	Framework	RAM	Map only	CPU time	Wall time	
20cm	octomap	203.25	20.78	688.71	709.99	
	supereight2	249.03	107.79	411.67	67.14	
	voxblox	261.02	66.32	228.12	48.07	
	ours (rays)	180.86	6.94	87.39	88.78	
	ours (beams)	138.92	8.82	107.67	113.26	
5cm	octomap	14404.76	981.02	36252.70	35790.60	
	supereight2	2926.42	2333.93	2853.12	404.19	
	voxblox	3718.85	2362.58	1788.90	162.36	
	ours (rays)	1192.95	241.84	1656.26	1671.58	
	ours (beams)	1065.21	402.18	2085.05	2083.61	

Method	Voxel size (cm)	Total (ms)	Ray casting (ms)	Insertion (ms)
UFOMap OctoMap UFOMap ⁺ UFOMap [†]	4	$\begin{array}{c} 60.9 \pm 44.7 \\ 104.6 \pm 82.2 \\ 21.1 \pm 12.0 \\ 10.9 \pm 4.7 \end{array}$	$\begin{array}{c} 46.8 \pm 32.7 \\ 71.8 \pm 53.0 \\ 14.3 \pm 6.7 \\ 9.3 \pm 3.5 \end{array}$	$\begin{array}{c} 14.1 \pm 12.2 \\ 32.9 \pm 30.1 \\ 6.8 \pm 5.4 \\ 1.6 \pm 1.3 \end{array}$
UFOMap OctoMap UFOMap* UFOMap [†]	2	$371 \pm 254 \\ 745 \pm 548 \\ 74 \pm 44 \\ 28 \pm 15$	$264 \pm 176 \\ 521 \pm 369 \\ 42 \pm 22 \\ 20 \pm 9$	$\begin{array}{c} 107 \pm 79 \\ 224 \pm 188 \\ 32 \pm 22 \\ 9 \pm 7 \end{array}$

Vizzo et al. 2022

Dataset	w/o Space Carving			w/ Space Carving						
	Voxblox	VDBFusion	Octomap	Voxblox	VDBFusion	Point cloud	Dense Voxel Grid	Octomap	Voxblox	VDBFusion
KITTI 07 Cow and Lady	10.11 fps 4.76 fps	19.57 fps 14.14 fps	0.42 fps 1.05 fps	0.60 fps 0.42 fps	1.37 fps 0.84 fps	2.95 GB 8.57 GB	30.6 GB 363.5 MB	1.12 GB 124.5 MB	n/a n/a	847.0 MB 122.9 MB

Evaluation: Accuracy

ТШТ

Evaluation: Accuracy

Reijgwart et al. 2023

				V	izzo et al. (2022)
Dataset	w/o Space Carving		w/ Space Carving		
	Voxblox	VDBFusion	Octomap	Voxblox	VDBFusion
KITTI 07	failed	$\textbf{0.031} \pm \textbf{0.102} \text{ m}$	$0.033\pm0.035~\text{m}$	$0.497\ \pm 1.991\ m$	$\textbf{0.023} \pm \textbf{0.022} \text{ m}$
Cow	$0.236\pm0.298\ m$	$\textbf{0.049} \pm \textbf{0.065} \text{ m}$	$0.195\pm0.262~\text{m}$	$0.319 \ \pm 0.398 \ m$	$\textbf{0.045} \pm \textbf{0.062} \text{ m}$

Additional/Future Work

SHINE-Mapping:

Panoptic Multi-TSDFs:

Zhong et al. (2023): SHINE-Mapping: Large-Scale 3D Mapping Using Sparse Hierarchical Implicit Neural Representations. International Conference on Robotics and Automation, pp. 8371–8377.

Schmid et al. (2022): Panoptic Multi-TSDFs: a Flexible Representation for Online Multi-resolution Volumetric Mapping and Long-term Dynamic Scene Consistency. International Conference on Robotics and Automation, pp. 8018–8024.

ТШП

Conclusion

- Many methods available
- Up- / down sides: Use-case specific
- Example for good usability: VDB-Fusion

Best performing:

- Wavemap
- Supereight 2

Questions? Go ahead!