

Mapping Beyond Geometry

Jie Hu

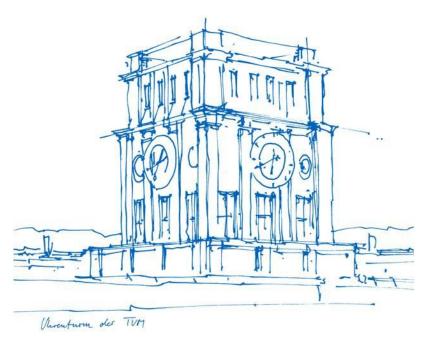
Supervisor: Hanzhi Chen

Technical University of Munich

TUM School of CIT

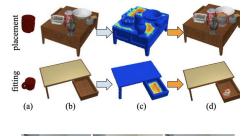
Robot Perception & Intelligence Seminar

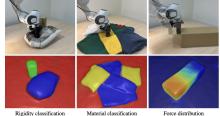
Garching Forschungszentrum, 03. December 2024



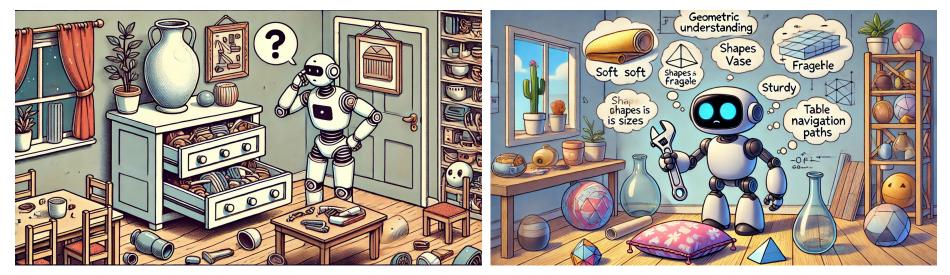
Overview

- Motivation
- Related Works
- Discussions
- Future work
- Summary





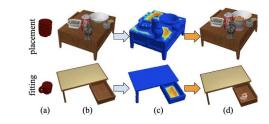
Motivation: Mapping Beyond Geometry



*Image generated with DALL·E by OpenAI

Mapping:

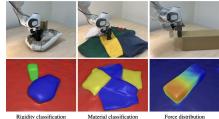
Affordance



O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning

Kaichun Mo¹, Yuzhe Qin², Fanbo Xiang², Hao Su², Leonidas Guibas¹ ¹Stanford University ²UCSD

Physical Properties



Real-time Mapping of Physical Scene Properties with an Autonomous Robot Experimenter

Andre Mouton¹ Edward Johns³ Andrew J. Davison² Iain Haughton¹ Edgar Sucar² ¹ Dyson Technology Ltd. ² Dyson Robotics Lab, Imperial College ³ Robot Learning Lab, Imperial College iain.haughton@dyson.com

Material classification

Agent-Object Affordance Learning

Robot-ObjectHuman-ObjectHand-ObjectImage: State of the st

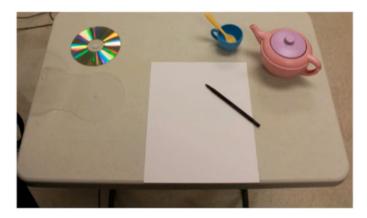
Redmon, Joseph, and Anelia Angelova. "Real-time grasp detection using convolutional neural networks." ICRA 2015

Li, Xueting, Sifei Liu, Kihwan Kim, Xiaolong Wang, Ming-Hsuan Yang, and Jan Kautz. "Putting humans in a scene: Learning affordance in 3d indoor environments." CVPR 2019

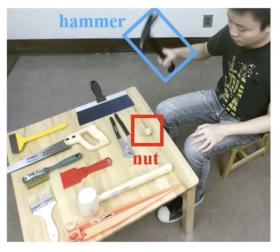
Mandikal, Priyanka, and Kristen Grauman. "Learning Dexterous Grasping with Object-Centric Visual Affordances.", ICRA 2021

Object-Object Affordance Learning

Small-scale & Require Human Annotation or Demonstration

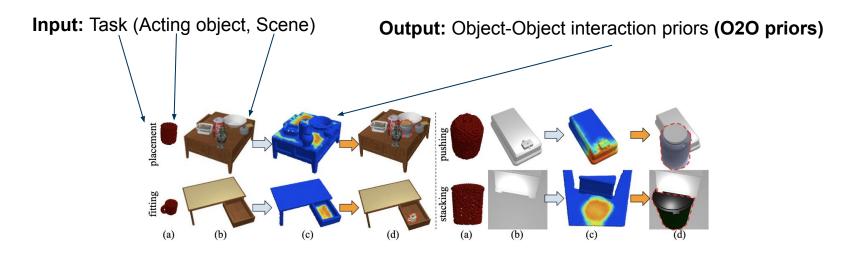


Sun, Yu, Shaogang Ren, and Yun Lin. "Object–object interaction affordance learning." *Robotics and Autonomous Systems*, 2014

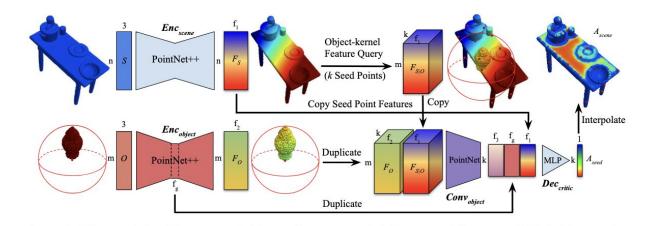


Zhu, Yixin, Yibiao Zhao, and Song Chun Zhu. "Understanding tools: Task-oriented object modeling, learning and recognition." CVPR 2015

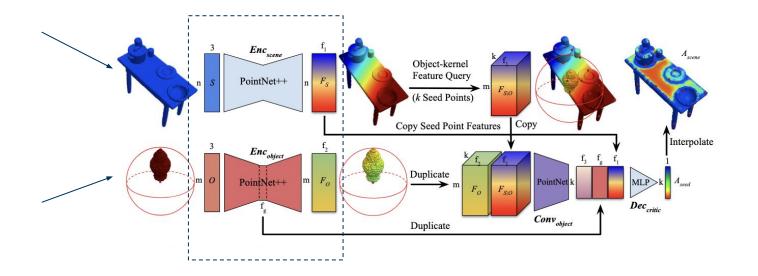
O2O-Afford: <u>Annotation-Free</u> <u>Large-Scale</u> <u>Object-Object</u> Affordance Learning (Mo et al., 2021)



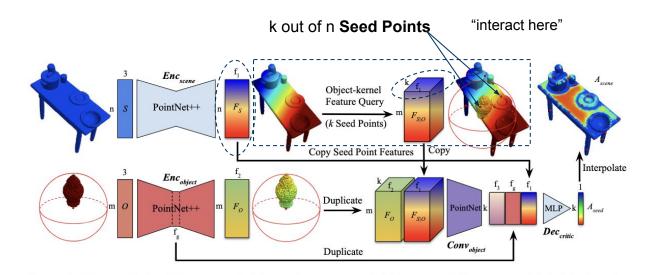
A Unified Framework for Diverse Object-object Interaction Tasks



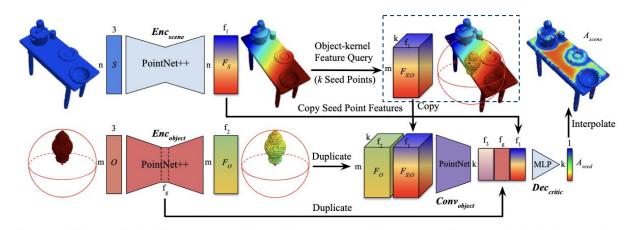
Kaichun Mo, Yuzhe Qin, Fanbo Xiang, Hao Su, and Leonidas Guibas. O2O-Afford: Annotation-free large-scale object-object affordance learning. CoRL 2021.



Kaichun Mo, Yuzhe Qin, Fanbo Xiang, Hao Su, and Leonidas Guibas. O2O-Afford: Annotation-free large-scale object-object affordance learning. CoRL 2021.

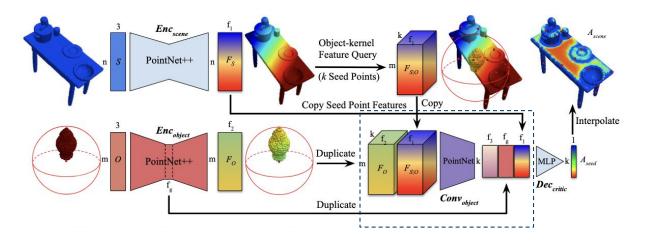


Kaichun Mo, Yuzhe Qin, Fanbo Xiang, Hao Su, and Leonidas Guibas. O2O-Afford: Annotation-free large-scale object-object affordance learning. CoRL 2021.



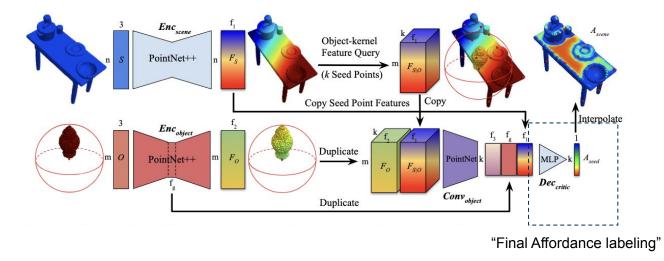
"Object Kernel Point Convolution"

Kaichun Mo, Yuzhe Qin, Fanbo Xiang, Hao Su, and Leonidas Guibas. O2O-Afford: Annotation-free large-scale object-object affordance learning. CoRL 2021.



"Object Kernel Point Convolution"

Kaichun Mo, Yuzhe Qin, Fanbo Xiang, Hao Su, and Leonidas Guibas. O2O-Afford: Annotation-free large-scale object-object affordance learning. CoRL 2021.



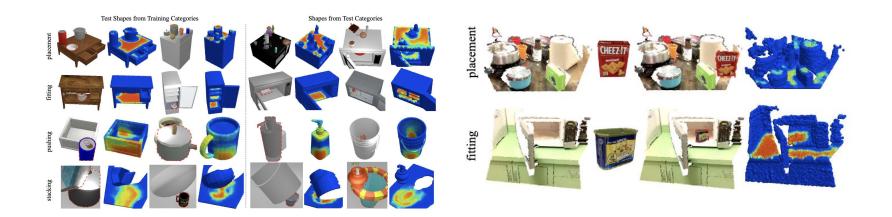
Kaichun Mo, Yuzhe Qin, Fanbo Xiang, Hao Su, and Leonidas Guibas. O2O-Afford: Annotation-free large-scale object-object affordance learning. CoRL 2021.

Experiments

Large-scale object data

• 4 Tasks

Results



Kaichun Mo, Yuzhe Qin, Fanbo Xiang, Hao Su, and Leonidas Guibas. O2O-Afford: Annotation-free large-scale object-object affordance learning. CoRL 2021.

Results

		F-score (%)	AP (%)			F-score (%)	AP (%)
placement	B-PosNor B-Bbox B-3Branch Ours	62.1 / 81.7 80.9 / 90.6 63.8 / 77.1 81.4 / 90.0	60.5 / 78.2 90.5 / 94.5 69.8 / 82.3 91.1 / 95.2	pushing	B-PosNor B-Bbox B-3Branch Ours	31.9 / 34.9 33.2 / 35.0 35.2 / 36.6 35.5 / 40.3	37.0 / 35.5 39.2 / 37.6 42.2 / 36.4 46.9 / 43.1
fitting	B-PosNor B-Bbox B-3Branch Ours	45.4 / 59.3 69.5 / 79.5 48.2 / 56.9 73.6 / 80.3	46.8 / 66.7 80.1 / 80.6 47.1 / 60.7 80.1 / 86.3	stacking	B-PosNor B-Bbox B-3Branch Ours	79.3 / 77.9 85.7 / 83.2 87.3 / 84.8 89.6 / 87.5	79.9 / 76.5 87.7 / 87.2 90.8 / 88.2 91.7 / 90.8

Conclusion

Strengths & Limitations:

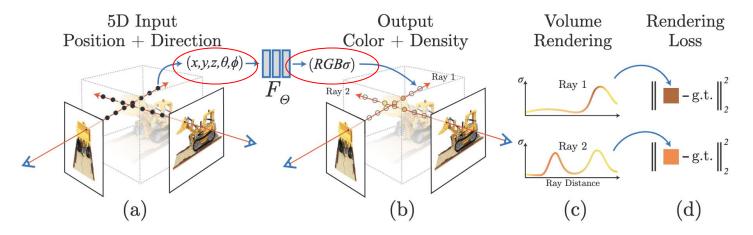
- + Self-supervised -> Annotation-free
- + Simulation-based -> Large-Scale
- + Generalizes
- Task specific
- Only 4 Object-Object interaction included
- Assumes uniform density for all objects

Future Works:

- Joint training across tasks
- Extend to more O2O interactions
- Extract more semantic-rich point features

Detour: implicit mapping

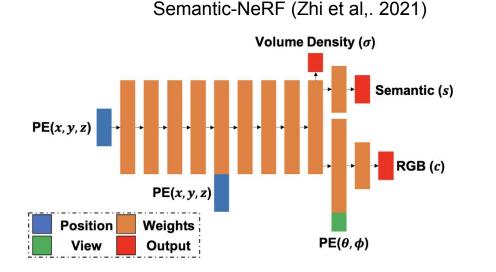
Neural Radiance Field (NeRF) (Ben et al., 2021)



Ben et al., Nerf: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM, 2021.

Jie Hu | Robot Perception and Intelligence Seminar | Mapping Beyond Geometry | Detour

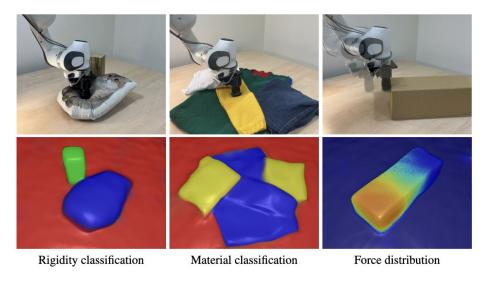
Detour: implicit mapping



Zhi et al., Inplace scene labelling and understanding with implicit scene representation. CVPR 2021.

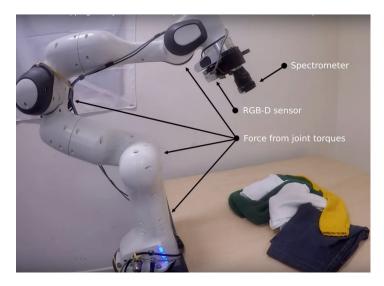
Jie Hu | Robot Perception and Intelligence Seminar | Mapping Beyond Geometry | Detour

<u>Real-time</u> Mapping of <u>Physical Scene Properties</u> with an <u>Autonomous Robot Experimenter</u> (Haughton et al., 2022)

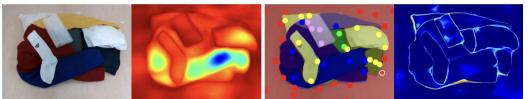


Haughton et al., Real-time mapping of physical scene properties with an autonomous robot experimenter, 2022.

Jie Hu | Robot Perception and Intelligence Seminar | Mapping Beyond Geometry | Physical Property Mapping



- Scene Exploration
- Entropy-Guided Interaction Selection.
- Autonomous Robot Experimentation.
- Semantic Map Optimization.



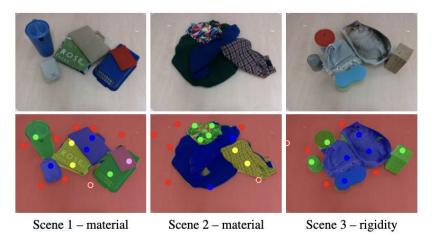
Initial keyframe and uncertainty map

Final segmentation and uncertainty map

Haughton et al., Real-time mapping of physical scene properties with an autonomous robot experimenter, 2022.

Experiments & Results

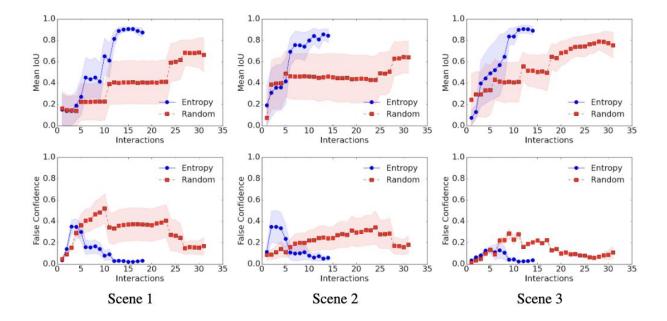
Segmentation	Example	Ours	Mask R-CNN	UCN + RICE
Material	Scene 1	0.91 ± 0.02	0.92 ± 0.02	0.90 ± 0.02
Material	Scene 2	0.89 ± 0.03	0.56 ± 0.11	0.56 ± 0.10
Rigidity	Scene 3	0.91 ± 0.04	0.92 ± 0.02	0.91 ± 0.02



Haughton et al., Real-time mapping of physical scene properties with an autonomous robot experimenter, 2022.

Jie Hu | Robot Perception and Intelligence Seminar | Mapping Beyond Geometry | Physical Property Mapping

Experiments & Results



Haughton et al., Real-time mapping of physical scene properties with an autonomous robot experimenter, 2022.

Jie Hu | Robot Perception and Intelligence Seminar | Mapping Beyond Geometry | Physical Property Mapping

Conclusion

Strengths & Limitations:

- + Fully autonomous
- + Learning from scratch
- + Novel scene properties

Future Works:

- Higher-resolution sensors
- Extend to more physical properties

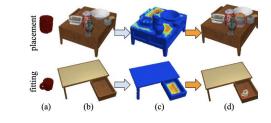
- Still suffer from catastrophic forgetting.
- Sensor quality matters
- Range limited by robot's kinematics

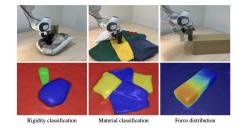
Comments:

Affordance

Physical Properties

Semantics





O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning

Kaichun Mo¹, Yuzhe Qin², Fanbo Xiang², Hao Su², Leonidas Guibas¹ ¹Stanford University ²UCSD

Real-time Mapping of Physical Scene Properties with an Autonomous Robot Experimenter

 Iain Haughton¹
 Edgar Sucar²
 Andre Mouton¹
 Edward Johns³
 Andrew J. Davison²

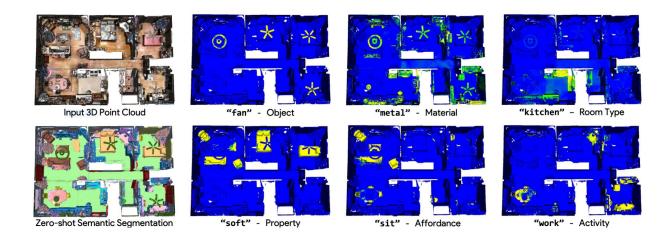
 ¹ Dyson Technology Ltd.
 ² Dyson Robotics Lab, Imperial College
 ³ Robot Learning Lab, Imperial College

 iain.haughton@dyson.com
 iain.haughton@dyson.com
 iain

OpenScene: 3D Scene Understanding with Open Vocabularies

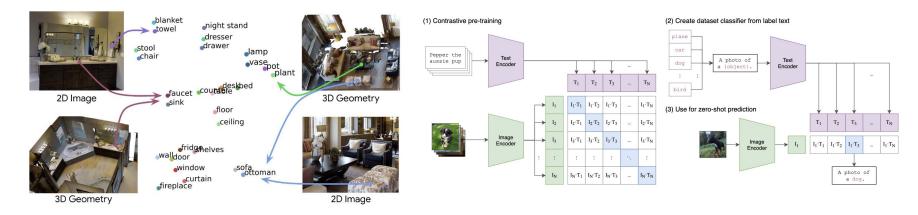
Songyou Peng ^{1,2,3}			Xyle Genova ¹ Marc Pollefeys ²	Chiyu "Max" Ji Thomas Funk	0	Andrea Tagliasacchi ^{1,5}	
	1 Google Research	² ETH Zurich	³ MPI for Intelliger	t Systems, Tübingen	⁴ Waymo LLC	⁵ Simon Fraser University	

OpenScene: 3D Scene Understanding with Open Vocabularies (Peng et al. 2023)



Peng et al., Openscene: 3d scene understanding with open vocabularies. CVPR 2023

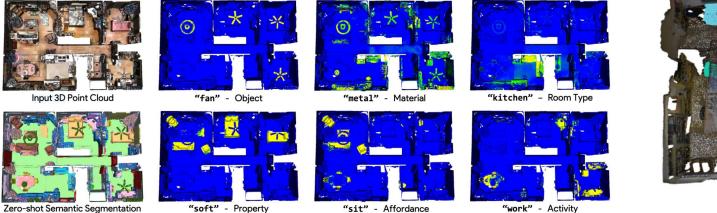
Idea



Peng et al., Openscene: 3d scene understanding with open vocabularies. CVPR 2023

Radford et al., Learning transferable visual models from natural language supervision, PMLR 2021

Results



Peng et al., Openscene: 3d scene understanding with open vocabularies. CVPR 2023

From my ADL4CV project, 2024

28

Discussion

Comment: Do you think LLM will eliminate the need for the direct mappings discussed before?

My personal take: No.

Instead, we can integrate them.

Summary

O2O-Afford:

Affordance

Large-scale simulation

supervised by simulated interaction results

Real-Time Mapping:

Physical Properties

Sparse interactions

supervised by experiment results

Summary

Mapping beyond geometry is essential for **robotic perception and intelligence**. It enables capabilities such as:

- Identifying physical properties such as rigidity and material.
- Predicting how objects will react to actions like pushing, lifting, or stacking.

It helps to bridge the gap between **perception** (seeing the world) and **action** (interacting with it)

Thank you for listening! Questions?

Jie Hu | Robot Perception and Intelligence Seminar | Mapping Beyond Geometry

References:

[1] Iain Haughton, Edgar Sucar, Andre Mouton, Edward Johns, and Andrew J.Davison. Real-time mapping of physical scene properties with an autonomous robot experimenter, 2022.

[2] Kaichun Mo, Yuzhe Qin, Fanbo Xiang, Hao Su, and Leonidas Guibas. O2O-Afford: Annotation-free large-scale object-object affordance learning. In Conference on Robot Learning (CoRL), 2021.

[3] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM, 65(1):99–106, 2021.

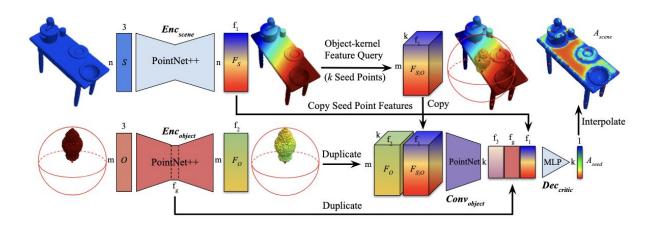
[4] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim, Andrew J. Davison, Pushmeet Kohli, Jamie Shotton, Steve Hodges, and Andrew Fitzgibbon. KinectFusion: Real-time dense surface mapping and tracking. In Proceedings of the 2011 10th IEEE International Symposium on Mixed

and Augmented Reality, ISMAR '11, pages 127–136, Washington, DC, USA, 2011.

[5] Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew J Davison. imap: Implicit mapping and positioning in real-time. In Proceedings of the IEEE/CVF international conference on computer vision, pages 6229–6238, 2021.

[6] Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and Andrew J Davison. Inplace scene labelling and understanding with implicit scene representation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 15838–15847, 2021.
[7] Shuaifeng Zhi, Edgar Sucar, Andre Mouton, Iain Haughton, Tristan Laidlow, and Andrew J Davison. ilabel: Interactive neural scene labelling. arXiv preprint arXiv:2111.14637, 2021.

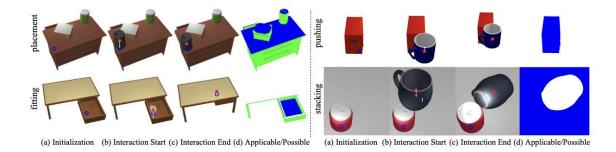
O2O-Afford



$$F_{S|o} = \frac{\sum_{l=1}^{t} w_l F_{S|e_l}}{\sum_{l=1}^{t} w_l}, w_l = \frac{1}{\|o - e_l\|_2}, l = 1, 2, \cdots, t,$$

O2O-Afford

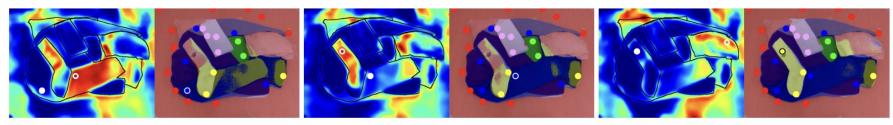
initialization



shapes

Train-Cats		Basket	Bottle	Bowl	Box	Can	Pot
Train-Data		77	16	128	17	65	16
Test-Data	281	43	44	5	18	5	
		Mug		Cabinet	Table	Trash	Wash
		134	34	272	70	25	13
		46	9	73	25	10	3
Test-Cats			Disp	Jar	Kettle	Micro	Safe
Test-Data	637	33	9	528	26	12	29

Real-Time Mapping



Interaction 25

Interaction 26

Interaction 27

$$u_{S} = -\sum_{c=1}^{C} \hat{\mathbf{S}}_{c} \left[u, v
ight] \log \left(\hat{\mathbf{S}}_{c} \left[u, v
ight]
ight)$$