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l. Introduction

Significance and challenges

* Importance of Volumetric

« Challenges at Large Scales
— Data Volume
— Memory Efficiency
— Global Consistency
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Introduction - Motivation ‘

Volumetric Mapping with Voxels:

— Basis for autonomous systems'
environmental understanding.

Reduced Computational Complexity:

— Compared to point clouds, voxel-based
mapping enables efficient processing and
storage. (Fixed upper-bound
Computational Complexity)

Applications: . ‘ :

— Autonomous vehicles, drones, robots. Volumetric maps

Recent Advancements:

— Sparse convolutional networks (SpConv)
improve voxel grid operations.

Real-time Adaptation:

— Systems can adjust in real-time for
navigation and obstacle avoidance.
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Introduction - Challenges at Large Scales

« Data Volume:

— LIDAR and RGB-D cameras produce vast data, challenging processing and storage.
 Memory Efficiency:

— Need for advanced data structures (e.g., Octrees) to store large maps compactly.

» Global Consistency:
— Alignment errors accumulate over large maps, requiring techniques like loop closure

and optimization.
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Il. Related Works

Key advancements in volumetric mapping
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Related Work - overview

» Hierarchical Representations:

— Efficient memory management and hybrid
compression techniques using Octrees and scalability
improvements with OpenVDB.(Hagmanns. 2022,
Wurm. 2010, Gehrung. 2016)

» Surface Modeling and Global
Consistency: .

— SDFs and TSDFs improve surface accuracy and
reduce alignment errors. (Reijgwart. 2019, Kuhner.
2020)
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« Semantic Mapping:
— Semantic layers enhance map
interpretability; (Blaha. 2016)
— Elastic submaps manage
transitions between indoor
and outdoor spaces.(Wang.
2022)




Ill. Methods

Exploring key techniques to address challenges in volumetric mapping

Hierarchical Representations

Surface Modeling

1-n-d

Semantic and Adaptive
Frameworks

Global Consistency
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Methods - Hicrarchical Representations

* Octrees
— divide space into cubic voxels.
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* Log-odds representation
— For efficient belief updates. (also
enables loop adaption)

L(n|zit) = Ln|zieo1)+Ln| z).
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« OctoMap framework

— optimizes memory by pruning child
nodes. (resolution determined by
depth of nodes)

Fig. 3. By limiting the depth of a query, multiple resolutions of the
same map can be obtained at any time. The occupied cells are displayed in
resolutions 0.08 m, 0.64 ., and 1.28 m.
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Methods - surface Modeling

 SDFs  TSDFs
— model surfaces with high accuracy. — optimize performance with truncation.
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Methods - semantic and Adaptive Frameworks

» Adaptive regularization (Blaha. 2016) « Convex energy minimization
— prioritizes critical areas. model(Blaha. 2016)
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Figure 3: Adaptive regularizer (2D case).

Ei(x7) = Eiy1(Ani+1x7) = Erp1(X741)

» Elastic submaps adjust to
environmental changes. (Wang. 2022),
based on the work of Voxgraph
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Methods - Giobal Consistency
« SDF submaps (Reijgwart. 2019) » LiDAR-based fusion (Kihner. 2020)

o Cylinder projection model

The framework constructs a set of |
Signed Distance Function Submaps <=1t el

b

o Loop closure weight updates

W1 PR+ w(x)F(x)
Flx): = W(X)i1 + w(x)
W(x); = W(x)i—1 +w(x).
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IV. Experiments and Results

Real-world evaluations

« Memory Efficiency

« Semantic benchmarks

» Global Consistency
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Experiments and Results - Memory Efficiency

* OctoMap (Wurm. 2010)

TABLE I

MEMORY CONSUMPTION OF VARIOUS 3D DATASETS

Map dataset Mapped Resolution Memory consumption [MB] File size [MB]
P area [m>] [m] | Full grid No compression  Lossless compression | All data  Binary
Small scale indoor 3.5 x5.2x 1.7 0.05 1.03 1.91 1.38 0.54 0.02
. . . 0.05 80.54 73.64 41.70 15.80 0.67
FR-079 corridor 43.8 < 18.2 x 3.3 0.1 10.42 10.90 75 271 0.14
. 0.20 654.42 188.09 130.39 49.75 2.00
Freiburg outdoor 202 x 167 x 28 0.80 10.96 456 413 153 0.08
- . 0.20 637.48 91.43 50.70 18.71 0.99
New College (Epoch C) 250 x 161 x 33 0.80 1021 235 181 0.64 0.05

 Map compression (Gehrung. 2016)
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msolid and free space  ® solid space only
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» Global occupancy mapping using
OpenVDB(Hagmanns. 2022)

(c) Insertion Performance Comparison
(100000 points, 0.1 m resolution)
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Experiments and Results - semantic Mapping

» Adaptive resolution framework(Blaha. 2016)

Runtime@0.4 m [sec] Memory@0.4 m [GB] Memory@0.2 m [GB]
Scene 1 2 3 4 1 2 3 4 3 4
Octree 19883 19672 5488 4984 27 2.6 0.7 0.7 33 2.9
Grid 430545 416771 91982 92893 | 543 543 13.6 13.6 108.5 108.5
Octree (naive) 43174 43845 10603 11343 | 6.5 6.8 1.7 1.9 — —
Ratio (Grid) 21.7 21:2 16.8 18.6 20.1 209 194 194 329 40.2
Ratio (Octree naive) 22 2:2 1.9 23 24 26 24 2.7 — -

Table 2: Comparison of run-time and memory footprint of our method (Octree), [ | 7] (Grid), and a naive Octree. Maximum
gains for processing time and memory consumption per refinement level are shown in bold. The target Grids feature a
resolution of 572 x 572 x 256 (Scene | and 2) and 256 x 256 x 256 (Scene 3 and 4) at 0.4 m.

Figure 1: Semantic 3D model of the city of Enschede gener-

° EI aStI C su b m ap S fram ewor k (Wan g . 2022) ated with the proposed adaptive multi-resolution approach.

P2P dist (m) P2P dist (m)

MEAN: 10.7 cm MEAN: 5.5 cm™™
Ground Truth Baseline Proposed w/o Motion Aware Proposed w/ Motion Aware

Fig. 9. Exp 4.1 - The comparison between (a) the ground truth map of NCD Long experiment and each reconstruction created by (b) the baseline, (c) the proposed
system without motion aware LiDAR integration and (d) the proposed system with motion aware LiDAR integration. Colours indicate point-to-point distances (P2P
dist) between each reconstruction and the ground truth, and the distributions are also presented beside the colour bar. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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Experiments and Results - Giobal Consistency

* Voxgraph(Reijgwart. 2019)

integration I optimization EEN rovio
esdf B lidar undistortion

|
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Fig. 6: A breakdown of voxgraph CPU usage during a typical MAV flight

from Sec.|VIII-B| The global optimization scheme suggested in this proposal
consumes 44% of a single CPU core.

* LiDAR fusion(Kidhner. 2020)

500

400
Comparing with- and without SDF submaps

300

z|m|

200

100

0

—200 0

o Adjusting trajectory errors on the odometry
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Experiments and Results - Discussion of Trade-offs

« Memory Efficiency vs. » Real-time Adaptability vs.
Precision: Computational Cost
— OctoMap is fast for large — Static solutions (Blaha. 2016) cannot adapt as
environments quickly to fast-changing environments

— Gehrung's method balances
efficiency with accuracy

— Alternatives such as Octomap-RT(Min. 2023)
though results not presented here, does solve
the problem, but relies on computational
expensive devices(GPU).
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IV. Future Works

Proposed research directions

Key Aspects

0 Real-Time Scalability

O Sensor Fusion Integration

0 Memory Efficiency

0 Semantic Integration

Qiancheng HU
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Possiple Directions

0 Semantic and Dynamic Adaptability

0 GPU-Accelerated Volumetric
Mapping

O Advanced hybrid Compression
Techniques

O Multi-Sensor Fusion

U Global Consistency & Trajectory
Optimization
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V. Summary

...Towrap up...

Volumetric
Mapping

Key Methods
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Challenges

(XX ]

Experiments
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Thanks for your attention!
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