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Introduction: What is Depth Completion (DC)?
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• Definition: Predicting a dense depth image from sparse and irregularly-spaced depth 

measurmements (e.g. LiDAR)

• Why it matters:

Localization 3D mapping Obstacle avoidance



Introduction: Mixed-depth problem 
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Introduction: Challenges in DC
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LiDAR Data Limitatios 
(sparsity, spacing, costs)

Handling multiple sensor 
modalities (LiDAR, RBG)

Ground Truth Availability



1) Self-Supervised Sparse-to-Dense Depth 

Completion (Ma et al., 2018)

2) Non-Local Spatial Propagation Network 

(Park et al., 2020)

Outline
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Traditional approaches (e.g. interpolation)

• Focus: Filling holes and removing noise in 

relatively dense depth maps

• Drawbacks:

• Struggle with highly sparse data (e.g. LiDAR)

• Fail to handle complex patterns near object 

boundaries

(Deep) Learning-based methods

• Focus: Leveraging RGB guidance and learned 

representations for sparse data

• Potential to address limitations of classical 

methods? Let’s find out!

Related Work: An Overview
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Method: Deep Regression Network for DC
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1) Self-supervised Sparse-to-Dense: Self-supervised Depth Completion from LiDAR and Monocular Camera (Ma et al., 2018)



Method: Self-Supervised Training Framework 
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1) Self-supervised Sparse-to-Dense: Self-supervised Depth Completion from LiDAR and Monocular Camera (Ma et al., 2018)



Method: Losses
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1) Self-supervised Sparse-to-Dense: Self-supervised Depth Completion from LiDAR and Monocular Camera (Ma et al., 2018)



Results: Data Set and Metrics
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Data set: 

KITTI DC (for training and inference)

→Contains a semi-dense ground truth with ~30% annotated pixels

→No annotations in the top 1/3 of the images

Error metrics:

1) Self-supervised Sparse-to-Dense: Self-supervised Depth Completion from LiDAR and Monocular Camera (Ma et al., 2018)

KITTI Depth Completion Example



Results: Comparison with SOTA Methods
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1) Self-supervised Sparse-to-Dense: Self-supervised Depth Completion from LiDAR and Monocular Camera (Ma et al., 2018)



Results: Ablation Study (importance of net components)
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1) Self-supervised Sparse-to-Dense: Self-supervised Depth Completion from LiDAR and Monocular Camera (Ma et al., 2018)



Results: Evaluation of Self-Supervised Framework
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1) Self-supervised Sparse-to-Dense: Self-supervised Depth Completion from LiDAR and Monocular Camera (Ma et al., 2018)

Pros:

• Achieved SOTA resuts on error metrics 

• NN architecture flexible

Cons:

• Does not consider dynamic objects (PnP 

algorithm may fail)

• Architecture optimized for 64-line LiDARs

 



Method: Algorithm and architecture
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2) Non-Local Spatial Propagation Network (Park et al., 2020)



Method: Non-Local Spatial Propagation
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2) Non-Local Spatial Propagation Network (Park et al., 2020)



Method: Affinity Learning
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2) Non-Local Spatial Propagation Network (Park et al., 2020)



Method: Confidence-incorporated affinity normalization
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2) Non-Local Spatial Propagation Network (Park et al., 2020)



Method: Loss function
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2) Non-Local Spatial Propagation Network (Park et al., 2020)

• The entire net is trained end-to-end

• No direct supervision on non-local neighbors, affinities, and confidences



Results: NYU Depth V2
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2) Non-Local Spatial Propagation Network (Park et al., 2020)



Results: KITTI Depth Completion
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2) Non-Local Spatial Propagation Network (Park et al., 2020)



Results: Ablation Studies
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2) Non-Local Spatial Propagation Network (Park et al., 2020)

Pros:

• Achieved SOTA resuts on error metrics (better 

than self-supervised regression approach) 

Cons:

• Non-local spatial propagation comp. heavy

• Potentially slower inference times

 



Personal comments  
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Strengths

• SOTA benchmark performance on DC datasets

•→ Improved Robustness and accuracy

• Reduced label dependency

Limitations

• Computational complexity (esp. non-local operations)

• Pose estimation dependency (e.g. using PnP with RANSAC, can
be challenging in dynamic environments)

• Generalization challenges (can arise from e.g. texture-less or highly
reflective surfaces, low-light scenarios, etc)



Future work
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Data enhancement 
and availability

• Develop larger and more 
diverse datasets

• Improve scalable annotation
methods

• Enhance data quality and 
standardization

Architectural and 
algorithmic 

improvements

• Integrate other NNs, e.g. 
transformers or GNNs

• Ability to deal with highly 
dynamic objects/envs

Multi-modal and 
temporal integration

• Incorporate radar, sonar, 
IMU data

• Utilize temporal data from
successive frames



Summary
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DC is critical for many applications that require dense and accurate depth maps

Learning-based methods effectively leverage RGB and sparse depth data to improve 
accuracy and depth density → but challenges remain in robustness and generalization

Future work: data quality, algorithmic improvements, and multi-modality
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Q&A
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Thanks for 
your attention!

Questions?

https://doi.org/10.3390/s22186969
https://arxiv.org/abs/2205.05335
https://doi.org/10.1109/TNNLS.2022.3201534
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