

Depth Completion Using Sparse LiDAR and RGB Inputs

Alexander Fries MSc Robotics, Cognition, Intelligence Munich, 02.12.2025

Introduction: What is Depth Completion (DC)?

- **Definition:** Predicting a dense depth image from sparse and irregularly-spaced depth measurmements (e.g. LiDAR)
- **Why it matters:**

Introduction: Mixed-depth problem

Cheng et al., "Depth estimation via affinity learned with convolutional spatial propagation network.", ECCV, 2018

Introduction: Challenges in DC

(a) raw LiDAR scans

 (b) RGB

(c) semi-dense annotation

Handling multiple sensor modalities (LiDAR, RBG)

Ground Truth Availability

Outline

- Related Work $\frac{1}{\sqrt{2}}$
- **Methods** B
- Experiments & Results HTH
- Personal Comments \triangleleft
- Future Work \mathbb{G}

Summary

- *1) Self-Supervised Sparse-to-Dense Depth Completion* (Ma et al., 2018)
- *2) Non-Local Spatial Propagation Network* (Park et al., 2020)

Related Work: An Overview

Traditional approaches (e.g. interpolation)

- **Focus:** Filling holes and removing noise in relatively dense depth maps
- **Drawbacks**:
	- Struggle with highly sparse data (e.g. LiDAR)
	- Fail to handle complex patterns near object boundaries

(Deep) Learning-based methods

- **Focus**: Leveraging RGB guidance and learned representations for sparse data
- Potential to address limitations of classical methods? **Let's find out!**

Method: Deep Regression Network for DC

1) Self-supervised Sparse-to-Dense: Self-supervised Depth Completion from LiDAR and Monocular Camera (Ma et al., 2018)

Method: Self-Supervised Training Framework

1) Self-supervised Sparse-to-Dense: Self-supervised Depth Completion from LiDAR and Monocular Camera (Ma et al., 2018)

Method: Losses

1) Self-supervised Sparse-to-Dense: Self-supervised Depth Completion from LiDAR and Monocular Camera (Ma et al., 2018)

$$
\mathcal{L}_{\text{depth}}(\text{pred},\text{d})=\left\|\mathbb{1}_{\{\text{d}>0\}}\cdot(\text{pred}-\text{d})\right\|_2^2
$$

$$
\mathcal{L}_{\textrm{photometric}}(\textrm{warped}_1, \textrm{RGB}_2) = \sum_{s \in S} \frac{1}{s} \left\|1\!\!1_{\{\textrm{d}=-0\}}^{(s)} \cdot (\textrm{warped}_1^{(s)} - \textrm{RGB}_2^{(s)})\right\|_1
$$

 $\mathcal{L}_{\text{self}} = \mathcal{L}_{\text{depth}}(\text{pred}_1, d_1) + \beta_1 \; \mathcal{L}_{\text{photometric}}(\text{warped}_1, \text{RGB}_1) + \beta_2 \; \left\| \nabla^2 \text{pred}_1 \right\|_1$

Results: Data Set and Metrics

1) Self-supervised Sparse-to-Dense: Self-supervised Depth Completion from LiDAR and Monocular Camera (Ma et al., 2018)

Data set:

KITTI DC (for training and inference)

 \rightarrow Contains a semi-dense ground truth with \sim 30% annotated pixels

 \rightarrow No annotations in the top 1/3 of the images

KITTI Depth Completion Example

Error metrics:

- RMSE (mm) :
$$
\sqrt{\frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} \left| d_v^{gt} - d_v^{pred} \right|^2}
$$
 - REL : $\frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} \left| (d_v^{gt} - d_v^{pred})/d_v^{gt} \right|$
\n- MAE (mm) : $\frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} \left| d_v^{gt} - d_v^{pred} \right|$
\n- iRMSE (1/km) : $\sqrt{\frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} \left| 1/d_v^{gt} - 1/d_v^{pred} \right|^2}$ - δ_{τ} : Percentage of pixels satisfying
\n- iMAE (1/km) : $\frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} \left| 1/d_v^{gt} - 1/d_v^{pred} \right|$ max $\left(\frac{d_v^{gt}}{d_v^{pred}}, \frac{d_v^{pred}}{d_v^{gt}} \right) < \tau$

Results: Comparison with SOTA Methods

1) Self-supervised Sparse-to-Dense: Self-supervised Depth Completion from LiDAR and Monocular Camera (Ma et al., 2018)

comparison against passed of the age and the superiormed one come mould					
Method	$Input \parallel$			rmse [mm] mae [mm] irmse [1/km] imae [1/km]	
Nadaraya W [4]	d	1852.60	416.77	6.34	1.84
SparseConvs [4]	d	1601.33	481.27	4.94	1.78
ADNN [22]	d	1325.37	439.48	59.39	3.19
IP-Basic $[20]$	d	1288.46	302.60	3.78	1.29
$NConv-CNN$ [21]	d	1268.22	360.28	4.67	1.52
$NN + CNN2$ [4]	d	1208.87	317.76	12.80	1.43
Ours-d	d	954.36	288.64	3.21	$1.35\,$
SGDU [18]	RGBd	2312.57	605.47	7.38	2.05
Ours-RGBd	RGBd	814.73	249.95	2.80	1.21

Table 1: Comparison against state-of-the-art algorithms on the test set.

Results: Ablation Study (importance of net components)

1) Self-supervised Sparse-to-Dense: Self-supervised Depth Completion from LiDAR and Monocular Camera (Ma et al., 2018)

Table 2: Ablation study of the network architecture for depth input. Empty cells indicate the same value as the first row of each section. See Section 6.2 for detailed discussion.

Results: Evaluation of Self-Supervised Framework

1.34

1) Self-supervised Sparse-to-Dense: Self-supervised Depth Completion from LiDAR and Monocular Camera (Ma et al., 2018)

260.90

3.25

Pros:

Supervised Learning

• Achieved SOTA resuts on error metrics

878.56

• NN architecture flexible

Cons:

- Does not consider dynamic objects (PnP algorithm may fail)
- Architecture optimized for 64-line LiDARs

Method: Algorithm and architecture

2) Non-Local Spatial Propagation Network (Park et al., 2020)

Method: Non-Local Spatial Propagation

2) Non-Local Spatial Propagation Network (Park et al., 2020)

Method: Affinity Learning

2) Non-Local Spatial Propagation Network (Park et al., 2020)

 $\mathbf{X} = (x_{m,n}) \in \mathbb{R}^{M \times N}$: A 2D map to be updated $\mathcal{N}_{m,n}$: Neighbors of $x_{m,n}$

Method: Confidence-incorporated affinity normalization

2) Non-Local Spatial Propagation Network (Park et al., 2020)

Confidence scores are predicted together with ٠ initial depth estimation.

 \blacksquare Affinity values are **weighted** by the corresponding confidence score c_i .

$$
\widetilde{w} = c_i \frac{\tanh(\widehat{w}_i)}{\gamma}
$$

Method: Loss function

2) Non-Local Spatial Propagation Network (Park et al., 2020)

$$
L_{recon}(\mathbf{D}^{gt}, \mathbf{D}^{pred}) = \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} \left| d_v^{gt} - d_v^{pred} \right|^{\rho}
$$

 \mathbf{D}^{gt} : The ground truth depth \mathbf{D}^{pred} : Prediction from the network ρ :1 for ℓ_1 and 2 for ℓ_2 \mathcal{V} : Valid pixels of \mathbf{D}^{gt} $|\mathcal{V}|$: The number of valid pixels \mathcal{V}

- The entire net is trained end-to-end
- No direct supervision on non-local neighbors, affinities, and confidences

Results: NYU Depth V2

2) Non-Local Spatial Propagation Network (Park et al., 2020)

Table 1. Quantitative evaluation on the NYUv2 [29] dataset. Results are borrowed from each paper. Note that S2D [21] uses 200 sampled depth points per image as the input, while the others use 500.

Results: KITTI Depth Completion

2) Non-Local Spatial Propagation Network (Park et al., 2020)

Quantitative evalua-Table 2. tion on the KITTI DC test dataset [30]. The results from other methods are obtained from the KITTI online evaluation site.

Results: Ablation Studies

2) Non-Local Spatial Propagation Network (Park et al., 2020)

Pros:

• Achieved SOTA resuts on error metrics (better than self-supervised regression approach)

Cons:

- Non-local spatial propagation comp. heavy
- Potentially slower inference times

Personal comments

Strengths

- SOTA benchmark performance on DC datasets
- $\cdot \rightarrow$ Improved Robustness and accuracy
- Reduced label dependency

Limitations

- Computational complexity (esp. non-local operations)
- Pose estimation dependency (e.g. using PnP with RANSAC, can be challenging in dynamic environments)
- Generalization challenges (can arise from e.g. texture-less or highly reflective surfaces, low-light scenarios, etc)

Future work

Data enhancement and availability

- Develop larger and more diverse datasets
- Improve scalable annotation methods
- Enhance data quality and standardization

Architectural and algorithmic improvements

- Integrate other NNs, e.g. transformers or GNNs
- Ability to deal with highly dynamic objects/envs

Multi-modal and temporal integration

- Incorporate radar, sonar, IMU data
- Utilize temporal data from successive frames

Summary

DC is critical for many applications that require dense and accurate depth maps

Learning-based methods effectively leverage RGB and sparse depth data to improve accuracy and depth density \rightarrow but challenges remain in robustness and generalization

Future work: data quality, algorithmic improvements, and multi-modality

Q&A

Further references:

1) Khan, M. A. U., Nazir, D., Pagani, A., Mokayed, H., Liwicki, M., Stricker, D., & Afzal, M. Z. (2022). A Comprehensive Survey of Depth Completion Approaches. *Sensors*, *22*(18), 6969.<https://doi.org/10.3390/s22186969>

2) Hu, J., Bao, C., Ozay, M., Fan, C., Gao, Q., Liu, H., & Lam, T. L. (2022). Deep Depth Completion from Extremely Sparse Data: A Survey. ArXiv. <https://arxiv.org/abs/2205.05335>

3) Xie, Z., Yu, X., Gao, X., Li, K., & Shen, S. (2024). Recent advances in conventional and deep learning-based depth completion: A survey. IEEE Transactions on Neural Networks and Learning Systems, 35(3), 3395–3415. <https://doi.org/10.1109/TNNLS.2022.3201534>