ТЛП

Learning-based Multi-Modal Perception

Timo Class

Technical University Munich

TUM School of Computation, Information and Technology

Smart Robotics Lab

Seminar: Robot Perception & Intelligence

03 December 2024

Structure

- Motivation
- Overview
- Focused research
 - Related work
 - Method descriptions
 - Experiments and results
 - Shortcomings and future work
- Conclusion

Motivation

Boston Dynamics, Spot

Waymo, Autonomous vehicle

Starship Technologies, Delivery robot

Unitree Robotics, Humanoid Robot G1

ТШП

Motivation

Challenges:

Motivation

Overview

Overview

ПП

3D Lidar Reconstruction

Method description

- **Problem:** ٠
 - 3D reconstruction with sparse measurements results in incomplete reconstruction
 - \rightarrow path planning and free-space estimation for autonomous navigation may fail

Legged robot scanning a building

16-channel LiDAR 3D reconstruction

ТЛП

3D Lidar Reconstruction

Method description

- Solution:
 - Learning-based dense depth completion
 - Incorporate RGB images from three-camera setup (270°)
 - Incorporate learning-based depth uncertainty predictions

Camera setup on walking robot

3D Lidar Reconstruction Related work

Marija Popović, Volumetric Occupancy Mapping

3D Lidar Reconstruction

Method description

NYU

Depth

KITTI

Fangchang Ma, Sparse-to-Dense (Depth prediction CNN network S2D)

3D Lidar Reconstruction

Experiments and results

3D Reconstruction of NCD & Maths Inst. dataset for (left) 16-channel LiDAR, 64-channel LiDAR, Depth Completion, Ground Truth

Ш

3D Lidar Reconstruction

Experiments and results

3D Lidar Reconstruction Shortcomings and future work

Shortcoming:

4@

228×304

Imbalanced modality representation in Encoder input

512@

16×20

upsample

layer

upsample

laver

1024@

8×10

• RGB image potentially dominates input due to higher channel size

upsample

layer

256@

32×40

Fangchang Ma, Sparse-to-Dense (Depth prediction CNN network S2D)

upsample

layer

128@

64×80

3x3 conv

1@

128×160

64@

128×160

bilinea

upsample

1@

228×304

- Solution:
 - Add additional encoder

ResNet-50

1x1 conv

batch-norm

2048@

8×10

- Separate feature extraction of RGB and depth image
- Fuse features in final layer or simultaneously at each layer

Overview

BEVFusion: Multi-Task Multi-Sensor Fusion Method description

- Problem:
 - Various sensors entail different data modalities
 - Various tasks entail different requirements
- Solution:
 - Transformation into unified representation

ТЛП

BEVFusion: Multi-Task Multi-Sensor Fusion Method description

- Solution:
 - To camera \rightarrow geometric-lossy

• To LiDAR \rightarrow semantic-lossy

- To Birds-Eye-View
 - \rightarrow preserves geometric information
 - \rightarrow preserves semantic information

BEVFusion: Multi-Task Multi-Sensor Fusion Related work

(a) 2D instance segmentation

(c) Sampling and nearest neighbor matching Tianwei Yin, Multimodal Virtual Point 3D Detection

BEVFusion: Multi-Task Multi-Sensor Fusion Method description

ТЛП

BEVFusion: Multi-Task Multi-Sensor Fusion Experiments and results

		Su	Sunny		Rainy		Day		Night	
	Modality	mAP	mIoU	mAP	mIoU	mAP	mIoU	mAP	mIoU	
CenterPoint	L	62.9	50.7	59.2	42.3	62.8	48.9	35.4	37.0	
BEVDet/LSS*	С	32.9	59.0	33.7	50.5	33.7	57.4	13.5	30.8	
MVP	C+L	65.9 (+3.0)	51.0 (-8.0)	66.3 (+7.1)	42.9 (-7.6)	66.3 (+3.5)	49.2 (-8.2)	38.4 (+3.0)	37.5 (+6.7)	
BEVFusion	C+L	68.2 (+5.3)	65.6 (+6.6)	69.9 (+10.7)	55.9 (+5.4)	68.5 (+5.7)	63.1 (+5.7)	42.8 (+7.4)	43.6 (+12.8)	
					=> Improved performance at nighttime => Improved performance in rainy weather					

Performance analysis of BEVFusion under different weather and lightning conditions

ТЛП

BEVFusion: Multi-Task Multi-Sensor Fusion

Experiments and results

BEVFusion: Multi-Task Multi-Sensor Fusion

Shortcomings and future work

• Shortcoming:

• Loss of z-dimension due to transformation to Bird's-Eye View space

- Solution:
 - Multi-Scale BEV representation
 - Hybrid representation (BEV & 3D front-view features)
 - Volumetric representation (Voxelization)

Overview

- Problem:
 - RGB camera performance is prone to lightning condition
 - Worse performance in total darkness or glaring situations
- Solution:
 - Incorporate thermal camera image

Comparison of RGB- and thermal image in a bright scene

RTFNet network architecture

Experiments and results

Shortcomings and future work

- 1st Shortcoming:
 - Slow inference speed on embedded platforms
 - Large Encoder network
- 1st Solution:
 - Reduce network size (especially Encoder)

- 2nd Shortcoming:
 - Thermal images less informative when near objects share similar temperature
- 2nd Solution:
 - Develop mechanisms to identify data that is more informative

Conclusion

16-channel LiDAR

Conclusion

16-channel LiDAR 64-channel LiDAR

Conclusion

16-channel LiDAR 64-channel LiDAR RGB Camera

ЛШ

Conclusion

16-channel LiDAR 64-channel LiDAR RGB Camera Thermal camera

ЛШ

Conclusion

