# TIM Seminar Report: Efficient Processing of Event Data with Neural Networks

Andrii Chumak Supervisor: Yannick Burkhardt Smart Robotic Lab TUM School of Computation, Information, and Technology Technical University of Munich 03.12.2024



# TUTT

### **Introduction: Event Cameras**



Sub-millisecond latency: Multiple thousands fps time-resolution equivalent



=> Faster and more accurate object detection possible



High-dynamic range: Robustness in difficult lighting conditions



Data efficiency: Only the pixels sensing the changes generate events



However, most computer vision algorithms are designed for dense data



### Outline

- 1. Related Work
- 2. Method Descriptions
- 3. Experiments and Results
- 4. Personal Comments
- 5. Future Work
- 6. Summary



### **Related Work**





Research directions:

٠

٠

- Conventional dense networks, Reuse existing architectures Discards inherent sparsity and e.g., CNNs
  Discards inherent sparsity and temporal resolution
  - Spiking Neural NetworksModel asynchronous data efficientlyDifficult to train<br/>Accuracy to<br/>be improvedGraph Neural NetworksBest computational efficiencybe improved
- Transformers for spatio-temporal Good accuracy and inference time data

# **TIN** Method Descriptions: Asynchronous Event-based Graph Neural Networks (AEGNN)



# **TIN** Method Descriptions: Asynchronous Event-based Graph Neural Networks (AEGNN)

CNN



GNN



# **TIM** Method Descriptions: Asynchronous Event-based Graph Neural Networks (AEGNN)



# **TIN** Method Descriptions: Recurrent Vision Transformers (RVT)



Seminar: Robot Perception & Intelligence

## ТΠ Method Descriptions: Recurrent Vision Transformers (RVT)



MLP

►⊕

Grid-SA

→⊕-

MLP

 $(c_{k-1}, h_{k-1})$ 

discretized steps of time - Convert data into tensor suitable for convolutions

Seminar: Robot Perception & Intelligence

## ТΠ Method Descriptions: Recurrent Vision Transformers (RVT)



Seminar: Robot Perception & Intelligence

-

## **TI** Method Descriptions: Recurrent Vision Transformers (RVT)



Seminar: Robot Perception & Intelligence

-

## **TIN** Method Descriptions: Recurrent Vision Transformers (RVT)



Seminar: Robot Perception & Intelligence

-

## **TIN** Method Descriptions: Recurrent Vision Transformers (RVT)



-



### **Experiments and Results: AEGNN**



# ТШ

### **Experiments and Results: AEGNN**

|             |                 |              | N-C    | Caltech101 |             | Gen1                  |  |  |
|-------------|-----------------|--------------|--------|------------|-------------|-----------------------|--|--|
| Methods     | Representation  | Async.       | mAP↑   | MFLOP/ev↓  | mAP↑        | MFLOP/ev $\downarrow$ |  |  |
| YOLE [7]    | Event-Histogram | 1            | 0.398  | 3682       | -           | -                     |  |  |
| Asynet [36] | Event-Histogram | $\checkmark$ | 0.643  | 200        | 0.129       | 205                   |  |  |
| RED [43]    | Event-Volume    | X            | -      | -          | 0.40        | 4712                  |  |  |
| NVS-S [32]  | Graph           | $\checkmark$ | 0.346* | 7.8        | $0.086^{*}$ | 7.8                   |  |  |
| Ours        | Graph           | 1            | 0.595  | 7.41       | 0.163       | 5.26                  |  |  |
|             |                 |              |        |            |             |                       |  |  |

[1]

# ТШП

### **Experiments and Results: RVT**

|                       |                   |                | Gen1 |            | 1 Mpx       |            |            |
|-----------------------|-------------------|----------------|------|------------|-------------|------------|------------|
| Method                | Backbone          | Detection Head | mAP  | Time (ms)  | mAP         | Time (ms)  | Params (M) |
| NVS-S [27]            | GNN               | YOLOv1 [40]    | 8.6  | -          | -           | -          | 0.9        |
| Asynet [34]           | Sparse CNN        | YOLOv1         | 14.5 | -          | -           | -          | 11.4       |
| AEGNN <sup>[43]</sup> | GNN               | YOLOv1         | 16.3 | -          | -           | -          | 20.0       |
| Spiking DenseNet [10] | SNN               | SSD [30]       | 18.9 | -          | -           | -          | 8.2        |
| Inception + SSD [19]  | CNN               | SSD            | 30.1 | 19.4       | 34.0        | 45.2       | > 60*      |
| RRC-Events [7]        | CNN               | YOLOv3 [41]    | 30.7 | 21.5       | 34.3        | 46.4       | > 100*     |
| MatrixLSTM [6]        | RNN + CNN         | YOLOv3         | 31.0 | -          | -           | -          | 61.5       |
| YOLOv3 Events [20]    | CNN               | YOLOv3         | 31.2 | 22.3       | 34.6        | 49.4       | > 60*      |
| RED [38]              | CNN + RNN         | SSD            | 40.0 | 16.7       | 43.0        | 39.3       | 24.1       |
| ASTMNet [26]          | (T)CNN + RNN      | SSD            | 46.7 | 35.6       | 48.3        | 72.3       | > 100*     |
| <b>RVT-B</b> (ours)   | Transformer + RNN | YOLOX [15]     | 47.2 | 10.2 (3.7) | <u>47.4</u> | 11.9 (6.1) | 18.5       |
| RVT-S (ours)          | Transformer + RNN | YOLOX          | 46.5 | 9.5 (3.0)  | 44.1        | 10.1 (5.0) | 9.9        |
| RVT-T (ours)          | Transformer + RNN | YOLOX          | 44.1 | 9.4 (2.3)  | 41.5        | 9.5 (3.5)  | 4.4        |

[2]



### **Experiments and Results: RVT**



Seminar: Robot Perception & Intelligence



### **Experiments and Results: RVT**



(a)

Seminar: Robot Perception & Intelligence



### **Experiments and Results: RVT**



[2]



### **Personal Comments**

- AEGNN
  - Despite one of the best performance in its class, less precise than dense NNs
  - Significant advantage in theoretical computational performance but not as hardware optimized as dense NNs
- RVT
  - Real-time capable (2-4 ms forward pass on RTX 3090 GPU)
  - State of the art accuracy and runtime despite using synchronous approach

# ТШ

### Future Work

- Optimize AEGNN on specialized hardware (e.g., FPGAs, IPUs) for enhanced low-power performance [1]
- Fully leverage temporal structure of event data on RVT [2]
- Provide high quality frames to enrich information and overcome situations with no events available for longer time [2]
- Integrate event-based perception into a broader perception stack for more comprehensive real-time applications
- Label-efficient training on event data (e.g., LEOD [3] with RVT-S [2] could slightly outperform RVT-B with standard training) [3]



### Summary

- Introduced the potential of event cameras in perception tasks
- Explored efficient methods for processing asynchronous data
- Presented and analyzed two distinct approaches: AEGNN and RVT
- Highlighted applications in real-time, difficult environments, and resource-limited scenarios
- Shown some potential research directions

# Ш

#### References

1. Simon Schaefer, Daniel Gehrig, and Davide Scaramuzza. AEGNN: asynchronous event-based graph neural networks. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pages 12361–12371. IEEE, 2022.

2. Mathias Gehrig and Davide Scaramuzza. Recurrent vision transformers for object detection with event cameras. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023, pages 13884–13893. IEEE, 2023.

3. Ziyi Wu, Mathias Gehrig, Qing Lyu, Xudong Liu, and Igor Gilitschenski. Leod: Label-efficient object detection for event cameras. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 16933–16943, 2024.