BEV Map Based Perception for Autonomous Driving

Yu Wu

Technical University of Munich

TUM School of CIT

Smart Robotics Lab

Munich, 16. January 2024

ТШ

CONTENTS

Introduction

State of the art

3

Perception methods based on BEV

Methods comparison

Future work

ЛШ

Introduction

Introduction

State of the art

Yu Wu | Smart Robotic Lab | TUM

State of the art

Perception methods based on BEV

ТЛП

Perception methods based on BEV

Perception methods based on BEV

[Structure of BEVFormer]

Yu Wu | Smart Robotic Lab | TUM

ТЛП

Methods comparison

Methods comparison

Table 1: Detection results comparison on the nuScenes test set								
	Modality ¹	NDS	mAP	mATE	mASE	mAOE	mAVE	mAAE
FCOS3D[12]	С	0.428	0.358	0.690	0.249	0.452	1.434	0.124
DETR3D[13]	С	0.479	0.412	0.641	0.255	0.394	0.845	0.133
BEVDet[4]	\mathbf{C}	0.488	0.424	0.524	0.242	0.373	0.950	0.148
BEVDepth[6]	\mathbf{C}	0.600	0.503	0.445	0.245	0.378	0.320	0.126
$BEVFormer-S^{2}[7]$	\mathbf{C}	0.462	0.409	0.650	0.261	0.439	0.925	0.147
FSTR[16]	\mathbf{L}	0.729	0.694	0.258	0.252	0.316	0.221	0.137
PointPillars[5]	\mathbf{L}	0.453	0.305	0.517	0.290	0.500	0.316	0.368
VoxelNeXt[2]	\mathbf{L}	0.700	0.645	0.268	0.238	0.377	0.219	0.127
BEVFormer[7]	C+T	0.569	0.481	0.582	0.256	0.375	0.378	0.126
MVP[15]	C+L	0.705	0.664	0.263	0.238	0.321	0.313	0.134
BEVFusion[8]	C+L	0.729	0.702	0.261	0.239	0.329	0.260	0.134

¹ "C", "L" and "T" indicate Camera, LiDAR and Temporal

² BEVFormer-S does not leverage temporal information in the BEV encoder.

- NDS: nuScenes Detection Score
- mAP: mean Average Precision
- mATE: mean Average Translation Error

- mASE: Average Scale Error
- mAOE: mean Average Orientation Error
- mAVE: mean Average Velocity Error
- mAAE: mean Average Attribute Error

Methods comparison

- mAP (mean Average Precision): Distance from the 2D center points under BEV map
- NDS (nuScenes detection score): Weighted average of all evaluation indicators in the table
- mASE (Average Scale Error): 1 IoU (Intersection over Union) under perspective view

Future work

Yu Wu | Smart Robotic Lab | TUM

Future work

Thank you for listening!

Yu Wu Munich, 16. January 2024

