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State of the art

2D-Perception

* No depth information
« Static

* Limited application scenarios
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3D-Perception

Depth perception
More comprehensive understanding
of the environment

Wider range of application scenarios
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Perception methods based on BEV
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Perception methods based on BEV

Pre-BEV Method: Multi-module fusion
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Methods comparison

Table 1: Detection results comparison on the nuScenes test set
Modality’ NDS mAP mATE mASE mAOE mAVE mAAE

FCOS3D[12] C 0.428 0.358  0.690 0.249 0.452 1.434 0.124
DETR3DI[13] C 0.479 0.412  0.641 0.255 0.394 0.845 0.133
BEVDet[4] C 0.488 0.424  (.524 (.242 0.373 0.950 0.148
BEVDepth|[6] C 0.600 0.503  0.445 0.245 0.378 0.320 0.126
BEVFormer-S%7] C 0.462  0.409  0.650 0.261 0.439 0.925 0.147
FSTR[16] L 0.729  0.694  0.258 0.252 0.316 0.221 0.137
PointPillars[5] L 0.453  0.305  0.517 0.290 0.500 0.316 0.368
VoxelNeXt[2] L 0.700 0.645  0.268 0.238 0.377 0.219 0.127
BEVFormer[7] C+T 0.569 0.481  (0.582 0.256 0.375 0.378 0.126
MVP[15] C+L 0.705  0.664  0.263 0.238 0.321 0.313 0.134
BEVFusion[§] C+L 0.729 0.702  0.261 0.239 0.329 0.260 0.134

L»C” "L" and "T" indicate Camera, LiDAR and Temporal
2 BEVFormer-S does not leverage temporal information in the BEV encoder.

* NDS: nuScenes Detection Score *  mASE: Average Scale Error
*  mAP: mean Average Precision *  mAOE: mean Average Orientation Error
mMATE: mean Average Translation Error *  mAVE: mean Average Velocity Error

*  mAAE: mean Average Attribute Error
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Methods comparison

Detection results comparison on the nuScenes test set

ENDS mmAP mmASE

- mAP (mean Average Precision): Distance from the 2D center points under BEV map
- NDS (nuScenes detection score): Weighted average of all evaluation indicators in the table

- mASE (Average Scale Error): 1 — loU (Intersection over Union) under perspective view
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Future work

For LiDAR-

based -
‘ \\ 2R other directions
- Focus on researching /
backbone networks - exploring how to reduce information
02 04 loss during perspective transformation
- constructing new BEV detection heads

For Camera- For Fusion-
based X / AN @ based
- Proposing new approaches to - Integration of different modules has greater
obtain the depth information potential

- Reducing redundant information in temporal

fusion
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Thank you for listening!

Yu Wu
Munich, 16. January 2024
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