

Learning the Human Distribution

Master Seminar Robot Perception & Intelligence

Xiaoyue Hu

16. January 2024

ТШП

Outline

- Introduction
- Related works
- Method descriptions
- Experiments and results
- Future work

ТЛП

Introduction

- Human pose prior
- What is a human pose prior?
- Why do we need human pose prior?

SMPL(A Skinned Multi-Person Linear Model)

Figure 1: SMPL model[1]

3D mesh with N = 6890 vertices and K = 23(24) joints

$$M(\vec{\beta}, \vec{\theta}) = W(T_P(\vec{\beta}, \vec{\theta}), J(\vec{\beta}), \vec{\theta}, \mathcal{W})$$

$$T_P(\vec{\beta}, \vec{\theta}) = \bar{\mathbf{T}} + B_S(\vec{\beta}) + B_P(\vec{\theta})$$

 $B_S(\vec{eta})$: a blend shape function $J(\vec{eta})$: a function to predict K joint locations $B_P(\vec{ heta})$: a pose-dependent blend shape function

SMPLify

Fig. 2. SMPLify System overview[2]

- CNN-based method to predict 2D joint locations(DeepCut)
- fit a 3D body model to predicted 2D joints

[2] Keep it SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image

SMPLify

Loss function

 $E(\boldsymbol{\beta},\boldsymbol{\theta}) = E_J(\boldsymbol{\beta},\boldsymbol{\theta};K,J_{\text{est}}) + \lambda_{\theta}E_{\theta}(\boldsymbol{\theta}) + \lambda_aE_a(\boldsymbol{\theta}) + \lambda_{sp}E_{sp}(\boldsymbol{\theta};\boldsymbol{\beta}) + \lambda_{\beta}E_{\beta}(\boldsymbol{\beta})$

$$E_{J}(\boldsymbol{\beta}, \boldsymbol{\theta}; K, J_{est}) = \sum_{joint i} w_{i} \rho(\Pi_{K}(R_{\theta}(J(\boldsymbol{\beta})_{i})) - J_{est,i})$$

$$E_{\theta}(\boldsymbol{\theta}) \equiv -\log \sum_{j} (g_{j} \mathcal{N}(\boldsymbol{\theta}; \boldsymbol{\mu}_{\theta, j}, \boldsymbol{\Sigma}_{\theta, j})) \approx -\log(\max_{j} (cg_{j} \mathcal{N}(\boldsymbol{\theta}; \boldsymbol{\mu}_{\theta, j}, \boldsymbol{\Sigma}_{\theta, j})))$$

$$= \min_{j} (-\log(cg_{j} \mathcal{N}(\boldsymbol{\theta}; \boldsymbol{\mu}_{\theta, j}, \boldsymbol{\Sigma}_{\theta, j})))$$

$$E_{a}(\boldsymbol{\theta}) = \sum_{i} \exp(\boldsymbol{\theta}_{i})$$

[2] Keep it SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image

SMPLify

Fig. 3. Example results[2]

[2] Keep it SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image

Human pose prior(VPoser)

Variational autoencoder(VAE based)

Extend SMPL to SMPL-X

The new SMPL-X model has N = 10475 vertices and K = 54 joints

Extend SMPLify to SMPLify-X

$$E(\beta, \theta, \psi) = E_J + \lambda_{\theta_b} E_{\theta_b} + \lambda_{\theta_f} E_{\theta_f} + \lambda_{m_h} E_{m_h} + \lambda_{\alpha} E_{\alpha} + \lambda_{\beta} E_{\beta} + \lambda_{\mathcal{E}} E_{\mathcal{E}} + \lambda_{\mathcal{C}} E_{\mathcal{C}}$$

$$E_J(\boldsymbol{\beta}, \boldsymbol{\theta}; K, J_{\text{est}}) = \sum_{\text{joint } i} w_i \rho(\Pi_K(R_{\boldsymbol{\theta}}(J(\boldsymbol{\beta})_i)) - J_{\text{est}, i})$$

$$E_{\alpha}(\theta_b) = \sum_{i \in (elbows,knees)} \exp(\theta_i)$$

What about $E_{\theta_b}(\theta_b)$

[3] Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Human pose prior(VPoser)

Variational autoencoder(VAE based)

 $\mathcal{L}_{total} = c_1 \mathcal{L}_{KL} + c_2 \mathcal{L}_{rec} + c_3 \mathcal{L}_{orth} + c_4 \mathcal{L}_{det1} + c_5 \mathcal{L}_{reg}$

$$\mathcal{L}_{KL} = KL(q(Z|R)||\mathcal{N}(0,I))$$
$$\mathcal{L}_{rec} = ||R - \hat{R}||_2^2$$
$$\mathcal{L}_{orth} = ||\hat{R}\hat{R}' - I||_2^2$$
$$\mathcal{L}_{det1} = |det(\hat{R}) - 1|$$
$$\mathcal{L}_{reg} = ||\phi||_2^2,$$

Where $Z \in \mathbb{R}^{32}$ $R \in SO(3)$

$$E_{\theta_b}(\theta_b) = ||z||_2^2$$

VPoser Experiments

Table 1

Model	Keypoints	v2v error	Joint error
"SMPL"	Body	57.6	63.5
"SMPL"	Body+Hands+Face	64.5	71.7
"SMPL+H"	Body+Hands	54.2	63.9
SMPL-X	Body+Hands+Face	52.9	62.6

both fit on EHF dataset (Expressive Hands and Face)

Table 2

Version	v2v error
SMPLify-X	52.9
gender neutral model	58.0
replace Vposer with GMM	56.4
no collision term	53.5

VPoser Experiments

Fig. 4. Example results[3]

[3] Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

VPoser Experiments

Fig. 5. Failure cases[3]

[3] Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

- High-dimensional domain $SO(3)^K$
- More robust
- Fully differentiable
- More diverse samples

3D representation based on SMPL

Fig. 6. Pose-NDF[4]

 $\mathcal{S} = \{ \boldsymbol{\theta} \in SO(3)^K \mid f(\boldsymbol{\theta}) = 0 \}$

Distance between two poses:

$$d(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}) = \sqrt{\sum_{i=1}^{K} \frac{w_i}{2} (\arccos |\boldsymbol{\theta}_i^{\top} \cdot \hat{\boldsymbol{\theta}}_i|)^2},$$

$$\boldsymbol{\theta} = \{\boldsymbol{\theta}_1, ..., \boldsymbol{\theta}_K\} \quad \hat{\boldsymbol{\theta}} = \{\hat{\boldsymbol{\theta}}_1, ..., \hat{\boldsymbol{\theta}}_K\}$$

Hierarchical implicit function:

$$f_1^{\text{enc}} : (\boldsymbol{\theta}_1) \mapsto \mathbf{v}_1 \qquad f_k^{\text{enc}} : (\boldsymbol{\theta}_k, \mathbf{v}_{\tau(k)}) \mapsto \mathbf{v}_k, \quad k \in \{2 \dots K\}$$
$$\mathbf{p} = [\mathbf{v}_1 || \dots || \mathbf{v}_K]$$
$$f^{\text{df}} : \mathbb{R}^{l \cdot K} \to \mathbb{R}^+$$
$$f^{\text{udf}}(\boldsymbol{\theta}) = (f^{\text{df}} \circ f^{\text{enc}})(\boldsymbol{\theta})$$

Training the implicit function Loss function:

$$\mathcal{L}_{\text{UDF}} = \sum_{(\boldsymbol{\theta}, d) \in \mathcal{D}} ||f^{\text{udf}}(\boldsymbol{\theta}) - d_{\boldsymbol{\theta}}||_2 \quad \mathcal{L}_{\text{eikonal}} = \sum_{(\boldsymbol{\theta}, d) \in \mathcal{D}, \ d \neq 0} (||\nabla_{\boldsymbol{\theta}} f^{\text{udf}}(\boldsymbol{\theta})|| - 1)^2$$

$$\mathcal{D} = \{(\boldsymbol{\theta}_i, d_i)\}_{1 \le i \le N}$$

Projection Algorithm:

$$\boldsymbol{\theta}^{i} = \boldsymbol{\theta}^{i-1} - \alpha f(\boldsymbol{\theta}^{i-1}) \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}^{i-1})$$
$$\hat{\boldsymbol{\theta}} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in SO(3)^{K}} d(\boldsymbol{\theta}, \mathcal{S})$$

Motion denoising

Table 3

Data	HPS [23]			AMASS [38]			Noisy AMASS		
# frames	60	120	240	60	120	240	60	120	240
Method									
VPoser [49]	4.91	4.16	3.81	1.52	1.55	1.47	8.96	9.13	9.15
HuMoR $[52]$	9.69	8.73	10.86	3.21	3.62	3.67	11.04	17.14	30.31
Pose-NDF	2.32	2.14	2.11	0.59	0.55	0.54	7.96	8.31	8.46

Motion denoising

Fig. 7. motion denoising results[4]

Occlusion

Table 4

Data	Occ. Leg			Occ. Arm+hand			Occ. Shoulder +Upper Arm		
# frames	60	120	240	60	120	240	60	120	240
Method									
VPoser [49]	2.53	2.57	2.54	8.51	8.52	8.59	9.98	9.49	9.48
HuMoR $[52]$	5.60	6.19	9.09	7.83	8.44	10.25	4.75	5.11	4.95
Pose-NDF	2.49	2.51	2.47	7.81	8.13	7.98	7.63	7.89	6.76

3D pose estimation from images

Fig. 8. 3D shape and pose estimation[4]

[4] Pose-NDF: Modeling Human Pose Manifolds with Neural Distance Fields

3D pose estimation from images

$$\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\beta}, \boldsymbol{\theta}}{\operatorname{arg\,min}} \mathcal{L}_{J} + \lambda_{\boldsymbol{\theta}} \mathcal{L}_{\boldsymbol{\theta}} + \lambda_{\boldsymbol{\beta}} \mathcal{L}_{\boldsymbol{\beta}} + \lambda_{\alpha} \mathcal{L}_{\alpha}$$
$$\mathcal{L}_{\boldsymbol{\theta}} = f^{\mathrm{udf}}(\boldsymbol{\theta})$$
$$\lambda_{\boldsymbol{\theta}} = w f^{\mathrm{udf}}(\boldsymbol{\theta})$$

3D pose estimation from images

Table 5

Method	Optimization			ExPose	ExPose + Optimization			
	VPoser [49]	GAN-S [16]	Pose-NDF	-	+No prior	+ VPoser [49]	+ GAN-S [16]	+Pose-NDF
Per-vertex error (mm)	60.34	59.18	57.39	54.76	99.78	67.23	54.09	53.81

3D pose generation

Fig. 9. pose generation[4]

[4] Pose-NDF: Modeling Human Pose Manifolds with Neural Distance Fields

ТЛП

Future work

- Rerson-ground Contacts(HuMoR)
- Learning parameters directly from images(extended model)
- Dynamic Dataset(motion)
- Moving cameras

HuMoR

Related papers

[1] SMPL: A Skinned Multi-Person Linear Model
[2] Keep it SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image
[3] Expressive Body Capture: 3D Hands, Face, and Body from a Single Image
[4] Pose-NDF: Modeling Human Pose Manifolds with Neural Distance Fields
[5] HuMoR: 3D Human Motion Model for Robust Pose Estimation

Thank you for listening