Open Vocabulary 3D Scene Understanding

Muhammad Aman Ahmad Tifli

Open Vocabulary 3D Scene Understanding

Muhammad Aman Ahmad Tifli

Definition

Open Vocabulary

- Beyond Predefined Categories
- Handling Previously Unseen Objects
- Free-form language Integration
- Contextual Understanding
- Key-word: Zero-shot

3D Scene Understanding

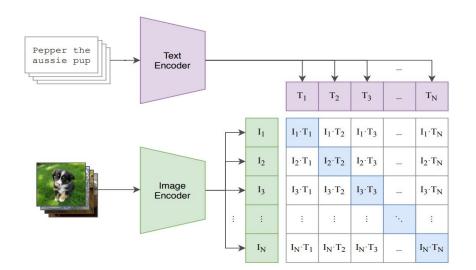
- Given images and 3D point clouds of an environment
- Goal: Semantic understanding of the environment for flexible robot applications

CLIP (Constrastive Language-Image Pre-Training)

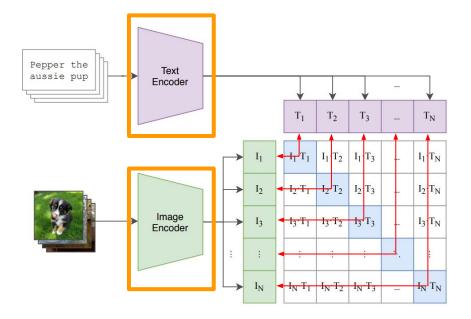
OpenAI model trained to predict similarities between text prompts and images

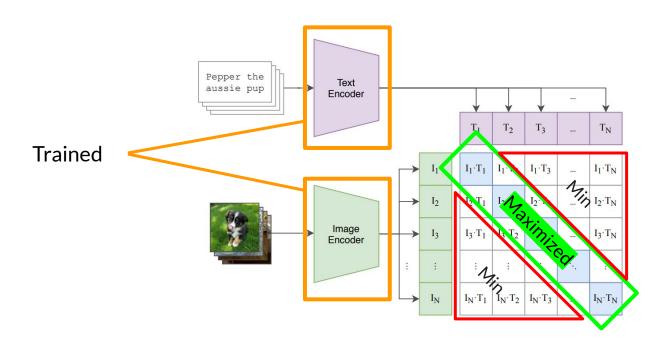
Trained on 400 million image-text pairs

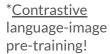
Diverse visual concepts learned from natural language



CLIP Embeddings Generation







CLIP Training

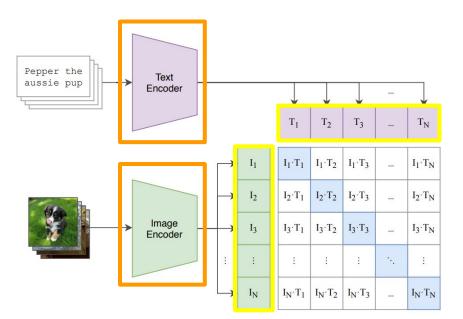
Introducing CLIP

OpenAI model trained to predict similarities between text prompts and images

Trained on 400 million image-text pairs

Diverse visual concepts learned from natural language

<mark>Encoders</mark> can be reused to create image and text embeddings



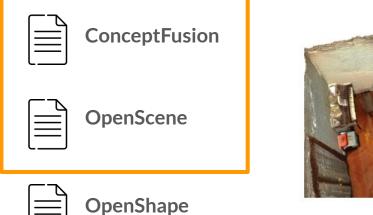
Relevant Papers Overview

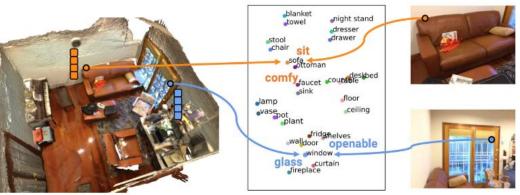
ConceptFusion: Open-Set Multimodal 3D Mapping

OpenScene: 3D Scene Understanding with Open Vocabularies

OpenShape: Scaling Up 3D Shape Representation Towards Open-World Understanding

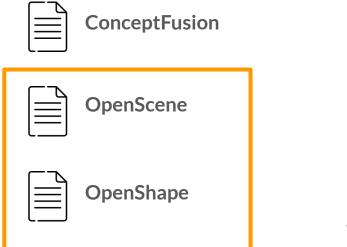
Relevant Papers Overview

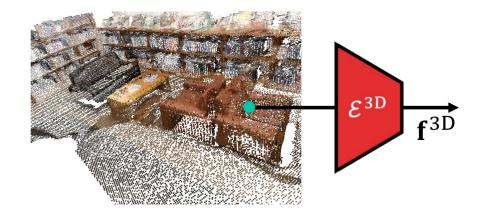




Each 3D point matched with CLIP features from corresponding pixels in 2D images

Relevant Papers Overview





Training an encoder to generate CLIP embeddings for 3D points

ConceptFusion: Open-Set Multimodal 3D Mapping

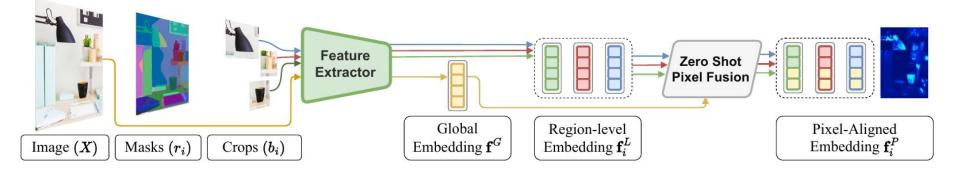
Jatavallbhula, Krishna Murthy, et al.

ConceptFusion: Open-Set Multimodal 3D Mapping Method: Map representation

- Goal: A 3D-Map, **M**, where each point has:
 - A vertex position, $\mathbf{v}_{\mathbf{k}} \in \mathbb{R}^3$
 - A normal vector, $\mathbf{n}_{\mathbf{k}} \in \mathbb{R}^3$
 - A confidence count, $\mathbf{c}_{\mathbf{k}}$
 - A concept embedding \mathbf{f}_{μ}^{P}

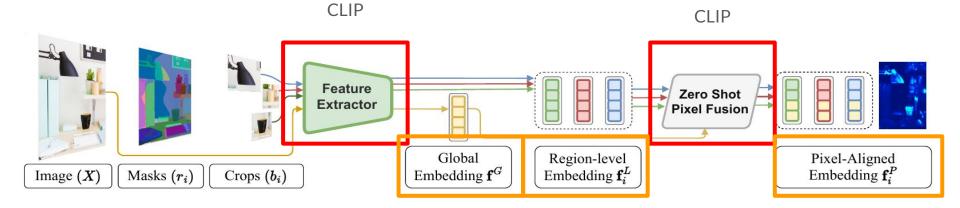
ConceptFusion: Open-Set Multimodal 3D Mapping

Method: Computing pixel-aligned features



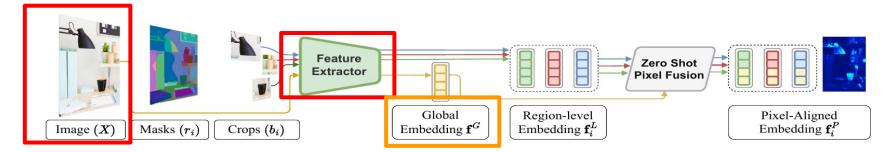
ConceptFusion: Open-Set Multimodal 3D Mapping

Image encoder as feature extractors



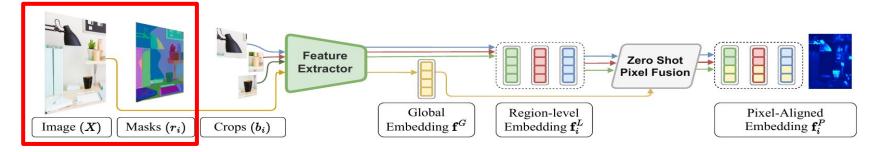
ConceptFusion: Open-Set Multimodal 3D Mapping Global Embedding

 $f^G = F(X)$



ConceptFusion: Open-Set Multimodal 3D Mapping

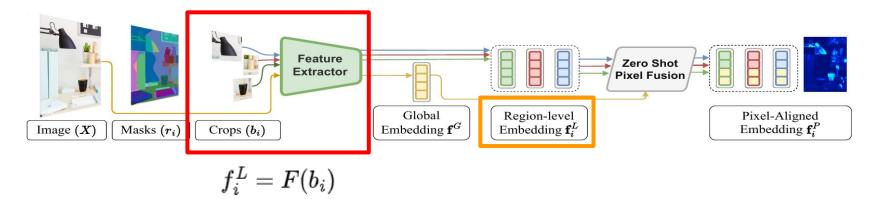
Region-level embedding



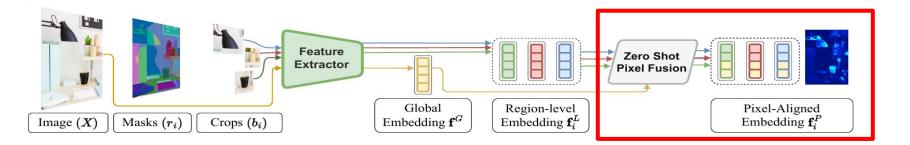
Segmented (Mask2Former, SAM)

ConceptFusion: Open-Set Multimodal 3D Mapping

Region-level embedding



ConceptFusion: Open-Set Multimodal 3D Mapping Pixel Aligned embedding



$$\phi = \langle f_i^L, f^G
angle$$
 $\varphi_{ij} = \langle f_i^L, f_j^L
angle$ $ar{\varphi_{ij}} = rac{1}{R} \Sigma_{j=1.j
eq 1}^R arphi_{i,j}$

$$w_i = rac{exp(rac{\phi_i+ar{arphi}_i}{ au})}{\Sigma^R_{i=1}exp(rac{\phi_i+ar{arphi}_i}{ au})}, au=1$$

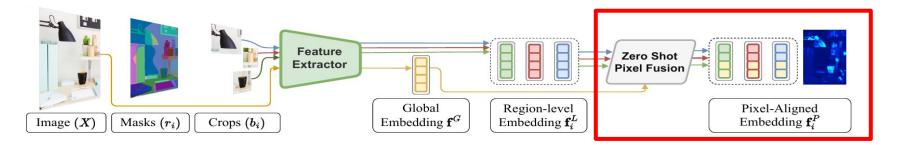
Cosine similarity

Uniqueness (similarity vs all others)

Mixing weight (Softmax)

ConceptFusion: Open-Set Multimodal 3D Mapping

Region-level embedding

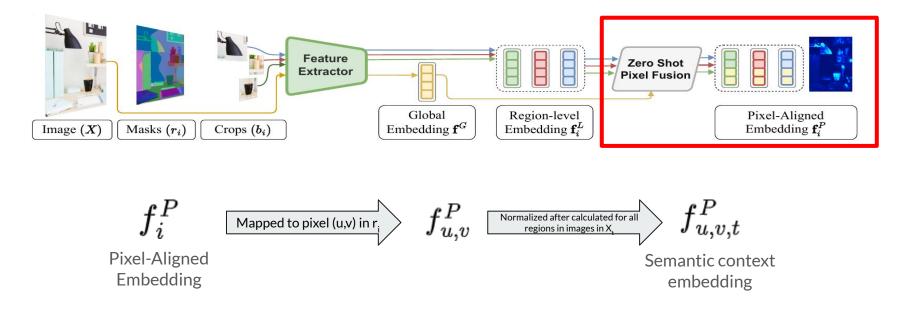


$$f_i^P = w_i f^G + (1 - w_i) f^L$$

Weighted combination (Pixel-Aligned Embedding)

ConceptFusion: Open-Set Multimodal 3D Mapping

Region-level embedding



ConceptFusion: Open-Set Multimodal 3D Mapping Fusing embeddings into the map

- Vertex and normal maps are first mapped to the global map using the camera pose
- For each pixel (**u**,**v**)_t in image **X**_t that has a corresponding point **p**_k in global map,**M** the following is used:

$$f_{k,t}^P \leftarrow rac{ar{c_k} f_{k,t-1}^P + lpha f_{u,v,t}^P}{ar{c_k} + lpha}$$

• Confidence, c_k, depends on distance to camera

ConceptFusion: Open-Set Multimodal 3D Mapping Final map

- A 3D-Map, **M**, where each point has:
 - A vertex position, $\mathbf{v}_{\mathbf{k}} \in \mathbb{R}^3$
 - A normal vector, $\mathbf{n}_{\mathbf{k}} \in \mathbb{R}^3$
 - A confidence count, $\mathbf{c}_{\mathbf{k}}$
 - A concept embedding $\mathbf{f}_{\mathbf{k}}^{\mathbf{P}}$

ConceptFusion: Open-Set Multimodal 3D Mapping Text Inference

Experiments & Results

ConceptFusion: Open-Set Multimodal 3D Mapping

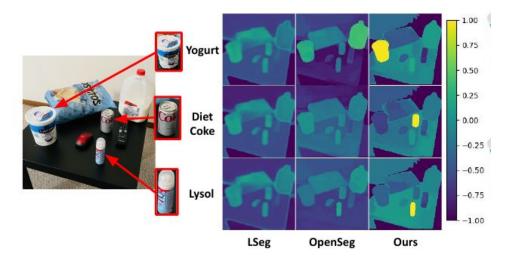
ConceptFusion: Open-Set Multimodal 3D Mapping Experiments and results: Queries on UnCoCo dataset

- Evaluation of text-query-based object localization on UnCoCo dataset
 - **Given**: Text query i.e "lamp"
 - Measured: How much the predicted area matches the ground truth (IoU)
 - Evaluated against LSeg-3D, OpenSeg-3D (Supervised) and MaskCLIP-3D (Zero-shot)

		3D mIoU	IoU >0.15	IoU >0.25	IoU >0.5
Supervised	LSeg-3D	0.128	25%	16.66%	9.72%
	OpenSeg-3D	0.289	43.05%	36.11%	27.78%
	MaskCLIP-3D	0.091	25.97%	9.09%	1.30%
	ConceptFusion	0.446	77.78%	69.44%	45.83%

ConceptFusion: Open-Set Multimodal 3D Mapping Concepts lost through fine-tuning

- Pixel-aligned embeddings capture
 - fine-grained concepts
- Other approaches like LSeg and
 OpenSeg tend to forget such
 concepts through fine-tuning



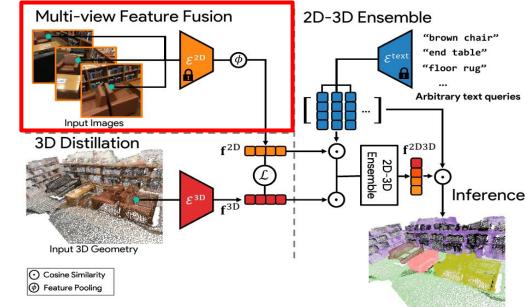
ConceptFusion: Open-Set Multimodal 3D Mapping Experiments and results: Real robotic systems

- Zero-shot tabletop rearrangement task
- Previously unseen objects
- Workspace sides tagged as left and right
- Goal: "Move Baymax to the right"

OpenScene: 3D Scene Understanding with Open Vocabularies

Peng, Songyou, et. al.

OpenScene: 3D Scene Understanding With Open Vocabularies Method Overview



Similar to ConceptFusion

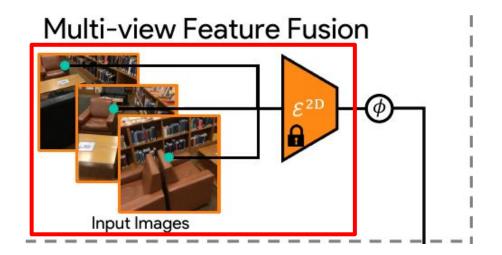
OpenScene: 3D Scene Understanding With Open Vocabularies Method: Compute Per-Pixel features

Per-pixel features
$$f_n = \epsilon^{2D}(X_n)$$
 (LSeg, MSeg)

For each 3D point, **p**, in the point cloud, **P**, the corresponding pixel, **u**, of each input frame is calculated:

$$\tilde{u} = I_i \cdot E_i \cdot \tilde{p}$$

I, E: intrinsic and extrinsic matrices of the i-th frame



OpenScene: 3D Scene Understanding With Open Vocabularies Method: Compute Per-Pixel features

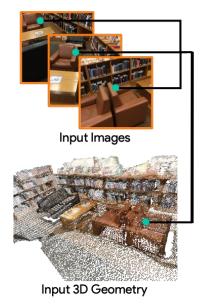
Assume K associated pixels per 3D point, p.

All 2D embeddings fused by average pooling:

 $f^{2D} = \phi(f_1, \ldots, f_k)$

Repeated for all points in point cloud

$$F^{2D} = \{f_1^{2D}, \dots, f_k^{2D}\}$$

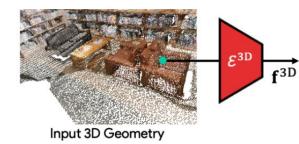


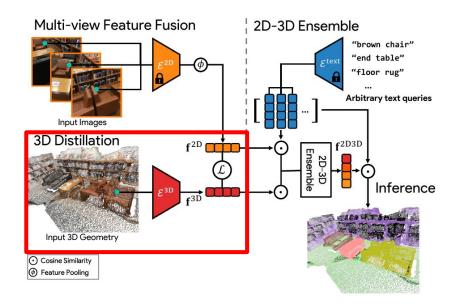
OpenScene: 3D Scene Understanding With Open Vocabularies Distillation of 3D point network

 $F^{\rm 2D} \, \mbox{can}$ be inconsistent depending on the input

image frames.

Solution: Distill a 3D point network (enocder)





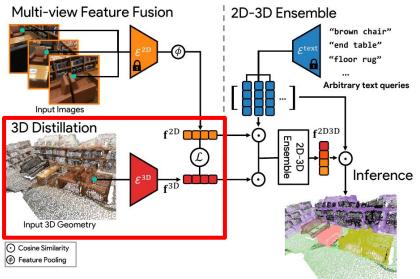
3D Scene Understanding With Open Vocabularies Distillation of 3D point network

MinkowskiNet as 3D-Semantic Segmentation backbone:

 $F^{3D} = \epsilon^{3D}(P)$

Loss used to learn to create embeddings in **F**^{2D} space:

$$\mathcal{L}=1-cos(F^{2D},F^{3D})$$

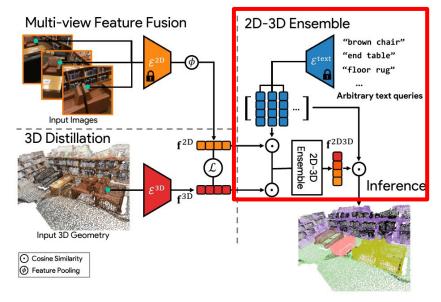


3D Scene Understanding With Open Vocabularies 2D-3D Feature Ensemble

- Observation:
 - 2D Features: better for small objects and

objects with ambiguous geometry

- 3D Features: better for objects with distinct shapes
- Idea: Combine both features



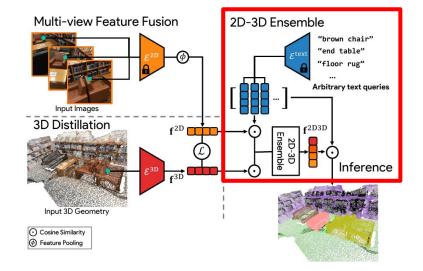
3D Scene Understanding With Open Vocabularies 2D-3D Feature Ensemble

- Text prompts (arbitrary of targeted) are provided and encoded with CLIP's text encoder
- 2. Cosine similarity of text embeddings calculated for all 2D and 3D features

 $s_n^{2D} = cos(f^{2D}, t_n)$ $s_n^{3D} = cos(f^{3D}, t_n)$

3. Maximum calculated and final feature f^{2D3D} has the highest score

$$s^{2D}=\max_n(s_n^{2D})$$
 $s^{3D}=\max_n(s_n^{3D})$

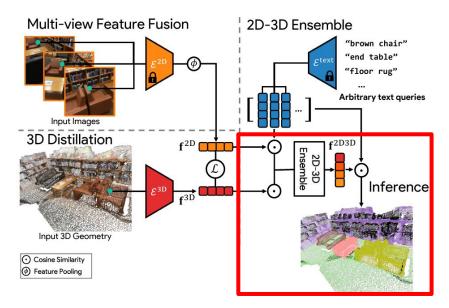


3D Scene Understanding With Open Vocabularies Inference for Semantic Segmentation

Cosine similarity score between any of the previously

discussed features, f^{2D} , f^{3D} , f^{2D3D} , can be used for inference.

 $\arg \max_n \{ cos(f^{2D3D}, t_n) \}$



Experiments & Results

OpenScene: 3D Scene Understanding With Open Vocabularies

OpenScene: 3D Scene Understanding With Open Vocabularies

Comparison on zero-shot 3D semantic segmentation benchmarks

 Competitive even against fully-supervised approaches

	nuScenes [3]		ScanN	let [11]	Matterport [4]		
	mIoU	mAcc	mIoU	mAcc	mIoU	mAcc	
Fully-supervised me	thods						
TangentConv [51]	-	-	40.9	-	-	46.8	
TextureNet [24]	-	-	54.8	-	-	63.0	
ScanComplete [12]	-	-	56.6	-	-	44.9	
DCM-Net [48]	-	-	65.8	-	-	66.2	
Mix3D [40]	-	-	73.6	-	-	-	
VMNet [22]	-	-	73.2	_	-	67.2	
LidarMultiNet [60]	82.0	-	-	-	-	-	
MinkowskiNet [10]	78.0	83.7	69.0	77.5	54.2	64.6	
Zero-shot methods							
MSeg [29] Voting	31.0	36.9	45.6	54.4	33.4	39.0	
Ours - LSeg	36.7	42.7	54.2	66.6	43.4	53.5	
Ours - OpenSeg	42.1	61.8	47.5	70.7	42.6	59.2	

OpenScene: 3D Scene Understanding With Open Vocabularies

Comparison on zero-shot 3D semantic segmentation benchmarks

- Competitive even against fully-supervised approaches
- Came closest to fully-supervised approaches on the Matterport dataset
- Matterport is the most diverse dataset (harder to train)

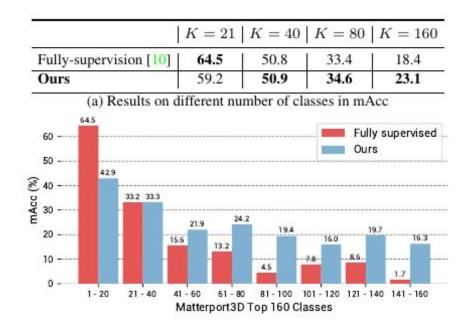
	nuScenes [3] ScanNet [11] Matterport [4]							
	mIoU	mAcc	mIoU	mAcc	mIoU	mAcc		
Fully-supervised me	thods							
TangentConv [51]	-	-	40.9	-	-	46.8		
TextureNet [24]	-	-	54.8	-	-	63.0		
ScanComplete [12]	-	-	56.6	-	-	44.9		
DCM-Net [48]	-	-	65.8	-	-	66.2		
Mix3D [40]	-	-	73.6	-	-			
VMNet [22]	-	-	73.2	2	-	67.2		
LidarMultiNet [60]	82.0	-	-	-	-	-		
MinkowskiNet [10]	78.0	83.7	69.0	77.5	54.2	64.6		
Zero-shot methods								
MSeg [29] Voting	31.0	36.9	45.6	54.4	33.4	39.0		
Ours - LSeg	36.7	42.7	54.2	66.6	43.4	53.5		
Ours - OpenSeg	42.1	61.8	47.5	70.7	42.6	59.2		

OpenScene: 3D Scene Understanding With Open Vocabularies Impact of increasing number of object classes

Dataset split into most frequent K classes, where K = 21, 40, 80, 160

A different MinkoswkiNet was trained for each K, while OpenScene was always kept the same

OpenScene outperforms the fully supervised method as classes increase and instances per class decrease



OpenShape: Scaling Up 3D Shape Representation Towards Open-World Understanding

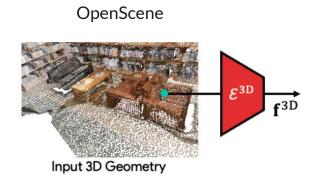
Liu, Minghua, et al.

OpenShape: Scaling up 3D Shape Representation Towards Open-World Understanding Introduction & Overview

ক্র	مە
דירא	۵ م
ᡟ᠋᠋᠋ᢋᠯ	E°.
	5

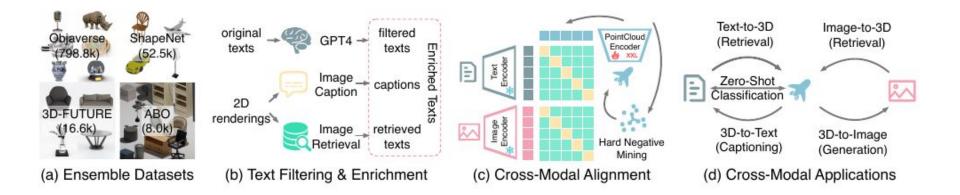
Learning an encoder that takes in 3D Shapes to create per-pixel 3D embeddings

Problem: Available 3D datasets to small for good generalization



Ensembling datasets & Strategies for effective learning

OpenShape: Scaling up 3D Shape Representation Towards Open-World Understanding Introduction & Overview



OpenShape: Scaling up 3D Shape Representation Towards Open-World Understanding Dataset ensembling

Four largest public 3D datasets ensembled (876k shapes)

ShapeNet, ABO, 3D-Future cover limited shapes and categories

Objaverse is more diverse but has uneven quality and distributions

OpenShape: Scaling up 3D Shape Representation Towards Open-World Understanding Dataset ensembling: Objaverse

Objaverse is uploaded by web users, not human-verified for quality

Aa

Text descriptions are noisy

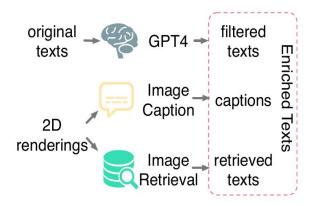
Uninformative or inaccurate ground truth labels

OpenShape: Scaling up 3D Shape Representation Towards Open-World Understanding Text Filtering and Enrichment

GPT 4 filters out inaccurate or uninformative texts

BLIP and Azure used to generate text descriptions from images

k-NN images from LAION-5B retrieved using CLIP ViT-L index. Captions from these images also used.

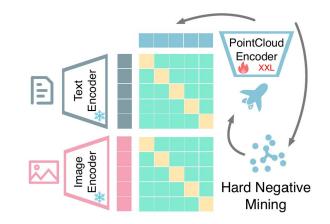


OpenShape: Scaling up 3D Shape Representation Towards Open-World Understanding Training overview

Text and image encoders from CLIP are frozen

Sample of point cloud, image and text are encoded

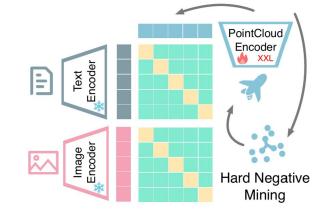
Trained to maximize matching pairs and minimize other embeddings



OpenShape: Scaling up 3D Shape Representation Towards Open-World Understanding Hard Negative Mining

Normal first round of training with random batches

Second round, randomly select shapes and obtain k-NN neighbors of those shapes



Increases likelihood of confusing pairs in a batch

Experiments & Results

OpenShape: Scaling up 3D Shape Representation Towards Open-World Understanding

OpenShape: Scaling up 3D Shape Representation Towards Open-World Understanding Zero-Shot shape classification

	training shape	Objav	erse-LV	IS 12	ModelNet40 72			ScanObjectNN 68		
Method	source	Top1	Тор3	Top5	Top1	Top3	Top5	Top1	Top3	Top5
PointCLIP 82	2D inferences,	1.9	4.1	5.8	19.3	28.6	34.8	10.5	20.8	30.6
PointCLIP v2 84	no 3D Training	4.7	9.5	12.9	63.6	77.9	85.0	42.2	63.3	74.5
ReCon 51	ShapeNet	1.1	2.7	3.7	61.2	73.9	78.1	42.3	62.5	75.6
CG3D 19		5.0	9.5	11.6	48.7	60.7	66.5	42.5	57.3	60.8
CLIP2Point 24		2.7	5.8	7.9	49.5	71.3	81.2	25.5	44.6	59.4
ULIP-PointBERT (Official) 75		6.2	13.6	17.9	60.4	79.0	84.4	51.5	71.1	80.2
OpenShape-SparseConv		11.6	21.8	27.1	72.9	87.2	93.0	52.7	72.7	83.6
OpenShape-PointBERT		10.8	20.2	25.0	70.3	86.9	91.3	51.3	69.4	78.4
ULIP-PointBERT (Retrained) OpenShape-SparseConv OpenShape-PointBERT	Ensembled (no LVIS)	21.4 37.0 39.1	38.1 58.4 60.8	46.0 66.9 68.9	71.4 82.6 85.3	84.4 95.0 96.2	89.2 97.5 97.4	46.0 54.9 47.2	66.1 76.8 72.4	76.4 87.0 84.7
ULIP-PointBERT (Retrained)	Ensembled	26.8	44.8	52.6	75.1	88.1	93.2	51.6	72.5	82.3
OpenShape-SparseConv		43.4	64.8	72.4	83.4	95.6	97.8	56.7	78.9	88.6
OpenShape-PointBERT		46.8	69.1	77.0	84.4	96.5	98.0	52.2	79.7	88.7

OpenShape compared to existing zero-shot approaches

OpenShape: Scaling up 3D Shape Representation Towards Open-World Understanding Zero-Shot shape classification

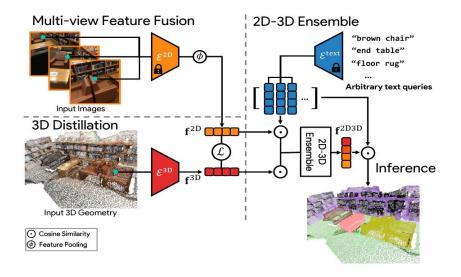
	training shape	Objaverse-LVIS 12			ModelNet40 72			ScanObjectNN 68		
Method	source	Top1	Тор3	Top5	Top1	Top3	Top5	Top1	Top3	Top5
PointCLIP 82	2D inferences,	1.9	4.1	5.8	19.3	28.6	34.8	10.5	20.8	30.6
PointCLIP v2 84	no 3D Training	4.7	9.5	12.9	63.6	77.9	85.0	42.2	63.3	74.5
ReCon 51	ShapeNet	1.1	2.7	3.7	61.2	73.9	78.1	42.3	62.5	75.6
CG3D 19		5.0	9.5	11.6	48.7	60.7	66.5	42.5	57.3	60.8
CLIP2Point 24		2.7	5.8	7.9	49.5	71.3	81.2	25.5	44.6	59.4
ULIP-PointBERT (Official) 75		6.2	13.6	17.9	60.4	79.0	84.4	51.5	71.1	80.2
OpenShape-SparseConv		11.6	21.8	27.1	72.9	87.2	93.0	52.7	72.7	83.6
OpenShape-PointBERT		10.8	20.2	25.0	70.3	86.9	91.3	51.3	69.4	78.4
ULIP-PointBERT (Retrained) OpenShape-SparseConv OpenShape-PointBERT	Ensembled (no LVIS)	21.4 37.0 39.1	38.1 58.4 60.8	46.0 66.9 68.9	71.4 82.6 85.3	84.4 95.0 96.2	89.2 97.5 97.4	46.0 54.9 47.2	66.1 76.8 72.4	76.4 87.0 84.7
ULIP-PointBERT (Retrained)	Ensembled	26.8	44.8	52.6	75.1	88.1	93.2	51.6	72.5	82.3
OpenShape-SparseConv		43.4	64.8	72.4	83.4	95.6	97.8	56.7	78.9	88.6
OpenShape-PointBERT		46.8	69.1	77.0	84.4	96.5	98.0	52.2	79.7	88.7

OpenShape compared to existing zero-shot approaches

Improving OpenScene

Uses pixel-aligned features (ConceptFusion)

Distillation of 3D encoder (OpenShape)

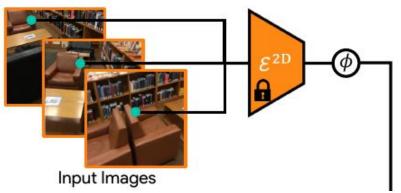


Limitations of pixel-aligned features

Embeddings depend on image viewpoint

Few corresponding images per point

Multi-view Feature Fusion



Idea: Apply generative AI

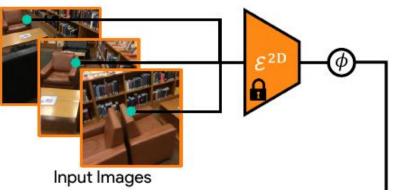
- 1. Identify objects in view
- 2. Generate more images of the objects using

the point cloud

Apply NERF to generate different viewing angles

Take pictures of objects inside the point cloud then improve quality

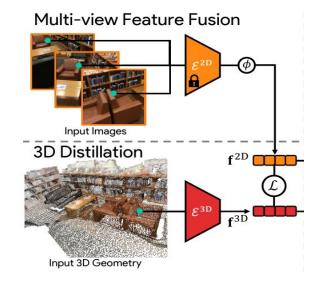
Multi-view Feature Fusion



Limitation of OpenScene 3D Distillation

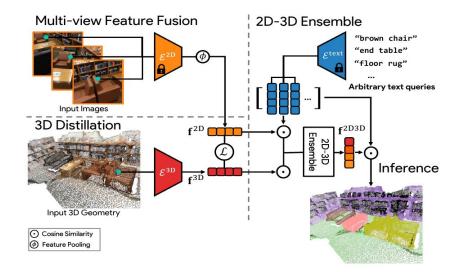
Training relies on images of the specific scene

Solution: Scale up 3D encoder training to be more generalizable (e.g OpenShape)



Better performance during inference

- More accurate generation of f^{2D} through synthetic image generation
- More accurate generation of $f^{\rm 3D}$ through scaling up $\epsilon^{\rm 3D}$ training
- More accurate features after ensemble leading to more accurate and flexible inference



Summary

Open Vocabulary 3D Scene Understanding Summary

- Modern approaches generate embeddings as the semantic anchor between 3D points, images, and queries
- CLIP is a popular and proven candidate for generating these embeddings
- Embeddings are be generated using two methods:
 - Using 2D images of the scene to extract embeddings of each pixel using CLIP
 - Training a 3D encoder which generates embeddings in the same space as CLIP embeddings
- Work improving the accuracy and generalization of these two methods will increase performance of 3D scene understanding in the future

Thank you!

Question & Answer