

Autonomous Exploration

Matthias Kreiner

03695596



Introd	uction
	ucuon

Related Work

Methods

Experimental Results

Comments

Future Work

Motivation

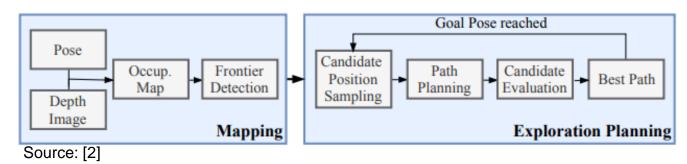
Autonomous Exploration

How to **map** an **unknown volume** *V* in a **safe** and **efficient** manner?

 $P_0^*, \dots, P_{N_P}^* = \underset{P_0, \dots, P_{N_P}}{\operatorname{arg\,max}} O(M_{N_P})$

Next Best View (NBV) Problem

What is the **best next pose to gain information** about the **volume** from the **sensor**?



Source: [1]

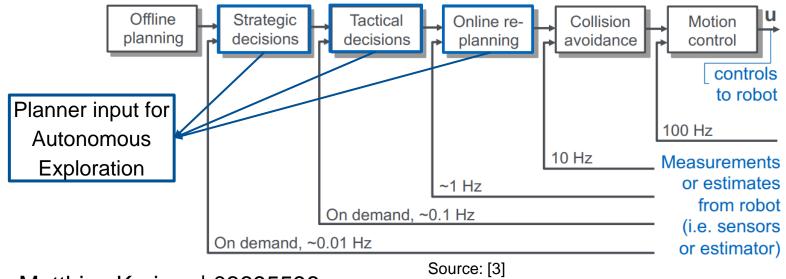
ПΠ

Terminology

Definitions

- Free volume: V_{free} with some probability $1 P_{v}(o)$
- **Occupied volume**: V_{occ} with some probability $P_{v}(o)$
- **Observed volume**: $V_{obs} = V_{free} \cup V_{occ}$
- **Residual volume**: $V_{res} = V \setminus V_{obs}$
- Frontier: observed map volume next to unobserved map volume

Control Loop



Related Work

Methods

Experimental Results

Comments

Future Work

Related Work

Sampling Based Explorer

- Bircher et al [4]
- 2016
- Volumetric and surface exploration
- Arbitrary depth sensor

- Schmid et al [1]
- 2022
- Volumetric exploration
- RGBD image

Frontier Based Explorer

- Dai et al [2]
- 2020
- Volumetric exploration
- Arbitrary depth sensor

Other Types

- Optimization based
- Physics inspired

Related Work

Methods

Experimental Results

Comments

Future Work

Methods I: Sampling Based Explorer [4]

Idea

Grow a geometric tree in free space, extract the branch with the highest gain and execute the first segment of that branch. Iteratively repeat this per timestep, i.e., receding horizon path planning.

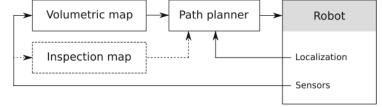
Implementation Details

- Drone state: $\xi = (x, y, z, \psi)^T$
- Gain of node n_k :

 $\mathbf{Gain}(n_k) = \mathbf{Gain}(n_{k-1}) + \mu(\mathbf{Visible}_{\mathbf{V}}(\mathcal{M}, \xi_k))e^{-\lambda c(\sigma_{k-1}^k)}$

- Geometric tree building: RRT
 - Reinitialize with remainder of best branch
 - Maximum depth N_{max} and N_{Tol}
- Map M: octree representation
- Initialization procedure

Matthias Kreiner | 03695596



Algorithm 1 Exploration Planner—Iterative Step

- 1: $\xi_0 \leftarrow$ current vehicle configuration
- 2: Initialize \mathbb{T} with ξ_0 and, unless first planner call, also with previous best branch
- 3: $g_{best} \leftarrow 0$

4: $n_{best} \leftarrow n_0(\xi_0)$

- ▷ Set best gain to zero
 - ⊳ Set best node to root
- 5: $N_{\mathbb{T}} \leftarrow$ Number of initial nodes in \mathbb{T}
- 6: while $N_{\mathbb{T}} < N_{\max}$ or $g_{best} = 0$ do
- 7: Incrementally build \mathbb{T} by adding $n_{new}(\xi_{new})$
- 8: $N_{\mathbb{T}} \leftarrow N_{\mathbb{T}} + 1$
- 9: **if** $Gain(n_{new}) > g_{best}$ then
- 10: $n_{best} \leftarrow n_{new}$
- 11: $g_{best} \leftarrow \mathbf{Gain}(n_{new})$
- 12: **if** $N_{\mathbb{T}} = N_{TOL}$ **then**
- 13: Terminate exploration
- 14: $\sigma \leftarrow \mathbf{ExtractBestPathSegment}(n_{best})$
- 15: Delete \mathbb{T}
- 16: **return** σ

Methods II: Frontier Based Explorer [2]

Idea

Sample candidates for the NBV from frontiers. A specific octree map representation allows for fast clustering of the frontier. Sparse raycasting and Shannon entropy is utilized to calculate the information gain of a candidate pose.

Implementation Details

- Drone state: $\mathbf{x} = (x, y, z, \psi)^T$
- Map *M*: octree representation using *supereight* [8] and Morton codes for spatial indexing
- Two step sampling process for candidate poses x_i
- Shannon's entropy and utility of a candidate pose:

$$\mathbb{H}(\mathbf{v}) = -P_o(\mathbf{v})\ln P_o(\mathbf{v}) - (1 - P_o(\mathbf{v}))\ln(1 - P_o(\mathbf{v}))$$
$$u(\mathbf{x}_i, \hat{W}_i) = \frac{\mathbb{H}(\mathbf{x}_i)}{T(\hat{W}_i)}$$

- Path planner to selected NBV: informed RRT*
- Optimize yaw for best path nodes from RRT*



Methods III: Scene Completion Explorer [1]

Idea

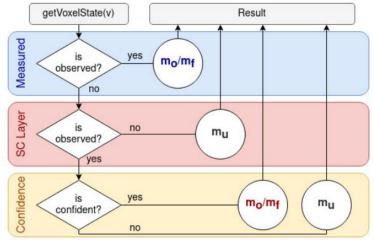
Deploy a **neural network** for incremental **Scene Completion (SC)**. Utilize the SC in a **hierarchical map** to **improve** the **mapping** and the **planning** of the SC Explorer and therefore the exploration itself.

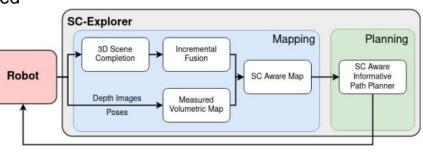
Implementation Details

- Drone state: $\mathbf{x} = (x, y, z, \psi)^T$
- Sampling based approach for NBV [9]
- Map M: TSDF Map
- Path planning with and without SC layer
- Utilization of SC estimates for ray casting
- Information gains based on measurements, SC layer or both, e.g.,
 Volume predicted

$$I_{sc}(v) = \begin{cases} 1, & \text{if } v \in \mathbb{P} \longrightarrow \text{by SC} \\ 0, & \text{otherwise} \end{cases}$$

 Utility of nodes based on information gain and traversal time of path segments
 Matthias Kreiner | 03695596





Related Work

Methods

Experimental Results

Comments

Future Work

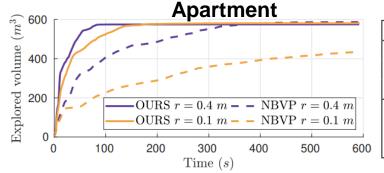
Results I

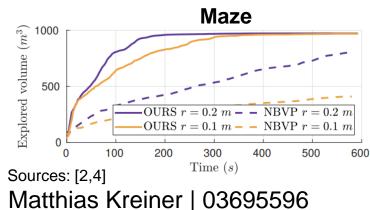
Task:

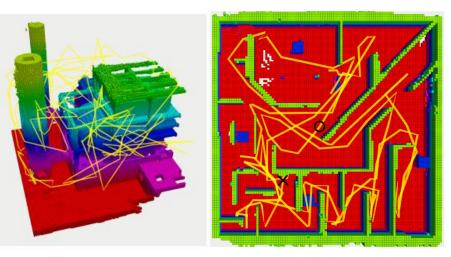
Explore a volume of $10 \times 20 \times 3 \text{ }m^3$, 20 x 20 x 2.5 m^3 , and 33 x 31 x 26 m^3

Planner

Sampling based planner vs frontier based planner







	<i>r</i> (m)	Apartment (ms)	Maze (ms)	Powerplant (ms)
	0.4	122 ± 36	_	_
Ours	0.2	156 ± 109	155 ± 71	152 ± 20
	0.1	68 ± 27	238 ± 80	_
	0.4	73 ± 8	_	_
NBVP	0.2	707 ± 44	775 ± 50	_
	0.1	7940 ± 410	8540 ± 425	-

Takeaways

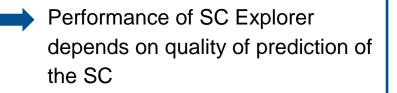
- Better scaling with higher map resolution
- Better global performance
- Anomaly in computation time for apartment and
 - r = 0.1 m for frontier based planner

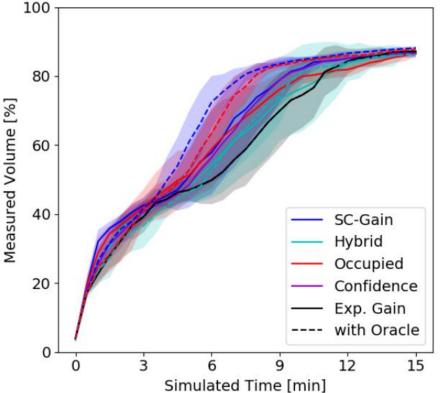
ПП

Results II

Performance gains using SC Explorer

- Mapping time improved with some decline of the mapping accuracy
- Using SC in planning speeds up performance set but safety is not guaranteed
- Using SC for raycasting decreases
 performance of SC Explorer compared to
 oracle





Related Work

Methods

Experimental Results

Comments

Future Work

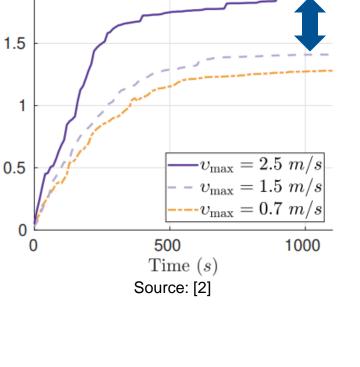
Comments I

Influence of Path Cost in Utility and on Final Performance

- Utility of Frontier based explorer with estimated completion time of $u(\mathbf{x}_i, \hat{W}_i) = \frac{\mathbb{H}(\mathbf{x}_i)}{T(\hat{W}_i)}$ path $T(\hat{W}_i)$ assuming maximum linear speed
- Different performance for different v_{max} due to influence of v_{max} on utility of candidate poses

Curse of Dimensionality

- Frontier based: RRT* in 3 DoF
- Sampling based planner extension [5]



2 × 10⁴

Explored volume (m^3)

Comments II: Comparison of Methods

Metric / Characteristic	Sampling Based Explorer	Frontier Based Explorer	Scene Completion Explorer
Computational Complexity / Execution Times	o Worse performance with decreasing map resolution	+ Better performance then sampling based	SC computational expensive ~ 1Hz
Hyperparameters	Weighting of path costHorizon	Weighting of path costSparse raycasting	 Probabilities for logs- odd updates Confidence cut-off (SC neural network)
Information Gain	Only volume of unmapped visible voxels	Mapped voxels with high uncertainty are also considered in entropy	SC as heuristic / prior for exploration
Exploration Speed	Ο	+	+
Safety	No collisions reported	No collisions reported	Optimistic planner/ naive TSDF not guaranteed safe

Related Work

Methods

Experimental Results

Comments

Future Work

Future Work

Dynamic Flight

- 6 DoF Drone Model
- Optimization based path planning
- Potential increase in performance since travel cost is more accurately estimated

Uncertainty aware SC

- Occupation probabilities and confidence cut-off hand tuned for SC
- Uncertainty aware SC for better performance including blocking raycasting

Safety / Reliability

- Classical TSDF map not safe due to artifacts / optimistic planning based on SC
- Multiple sensors / multi-resolution mapping pipeline
- Safety Layer / Reactive Avoidance [6]

Dynamic Environments

- All approaches presented today assume static environments
- First Step: Object Centric Exploration [7]

Sources

- L. Schmid, M. N. Cheema, V. Reijgwart, R. Siegwart, F. Tombari, and C. Cadena, "SC-Explorer: Incremental 3D Scene Completion for Safe and Efficient Exploration Mapping and Planning," pp. 1–18, 2022, [Online]. Available: <u>http://arxiv.org/abs/2208.08307</u>.
- [2] A. Dai, S. Papatheodorou, N. Funk, D. Tzoumanikas, and S. Leutenegger, "Fast Frontier-based Information-driven Autonomous Exploration with an MAV," in 2020 IEEE International Conference on Robotics and Automation (ICRA), May 2020, pp. 9570–9576, doi: 10.1109/ICRA40945.2020.9196707.
- [3] Lecture Notes "Mobile Robotics", Prof. Dr. Stefan Leutenegger, Technical University Munich, Wintersemester 2022/2023
- [4] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart, "Receding horizon path planning for 3D exploration and surface inspection," *Auton. Robots*, vol. 42, no. 2, pp. 291–306, Feb. 2018, doi: 10.1007/s10514-016-9610-0.
- [5] C. Witting, M. Fehr, R. Behnemann, H. Oleynikova, and R. Siegwart, "History-Aware Autonomous Exploration in Confined Environments Using MAVs," in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2018, pp. 1–9, doi: 10.1109/IROS.2018.8594502.

Sources

- [6] H. Oleynikova, Z. Taylor, R. Siegwart, and J. Nieto, "Safe Local Exploration for Replanning in Cluttered Unknown Environments for Microaerial Vehicles," *IEEE Robot. Autom. Lett.*, vol. 3, no. 3, pp. 1474–1481, Jul. 2018, doi: 10.1109/LRA.2018.2800109.
- S. Papatheodorou, N. Funk, D. Tzoumanikas, C. Choi, B. Xu, and S. Leutenegger, "Finding Things in the Unknown: Semantic Object-Centric Exploration with an MAV," *Proc. - IEEE Int. Conf. Robot. Autom.*, vol. 2023-May, no. Icra, pp. 3339–3345, 2023, doi: 10.1109/ICRA48891.2023.10160490.
- [8] E. Vespa, N. Nikolov, M. Grimm, L. Nardi, P. H. J. Kelly, and S. Leutenegger,
 "Efficient octree-based volumetric SLAM supporting signed-distance and occupancy mapping," IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 1144–1151, Apr. 2018.
- [9] L. Schmid, M. Pantic, R. Khanna, L. Ott, R. Siegwart, and J. Nieto, "An efficient sampling-based method for online informative path planning in unknown environments," IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1500–1507, April 2020

ПΠ

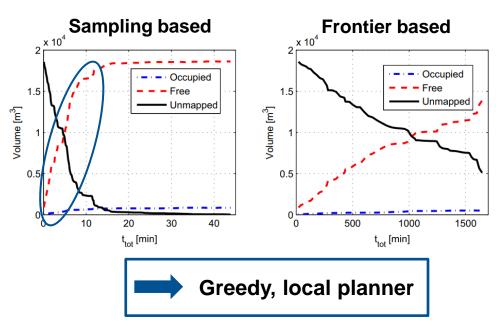
Additional Slides: Results [4]

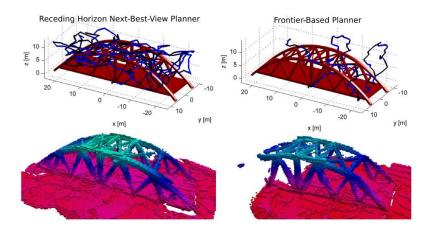
Task:

Explore a volume of 50 x 26 x 14 m^3

Planner

Sampling based planner vs Frontier based planner from 2002





Metric	Sampling based	Frontier based
t _{tot}	43.8 min	1670.1 min
t _{comp,tot}	9.4 min	1660.4 min
$ar{t}_{comp}$	1.6 <i>s</i> *	25.9 min

* With a maximum of replanning time of 23 s and map resolution of r = 0.25 m

Additional Slides: Comments

Locality of sampling based approaches

- SC Explorer utilizes a sampling based planner
- Greedy and local planner
- Good initial performance, then local minimum (*) until new large area of unmapped space is found

