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Motivation
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Autonomous Exploration

How to map an unknown volume 𝑽 in a 

safe and efficient manner?

Next Best View (NBV) Problem

What is the best next pose to gain information about the 

volume from the sensor?
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Source: [1]
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Terminology
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Definitions

• Free volume: 𝑉𝑓𝑟𝑒𝑒 with some probability 1 − 𝑃𝑣(𝑜)

• Occupied volume: 𝑉𝑜𝑐𝑐 with some probability 𝑃𝑣(𝑜)

• Observed volume: 𝑉𝑜𝑏𝑠 = 𝑉𝑓𝑟𝑒𝑒 ∪ 𝑉𝑜𝑐𝑐
• Residual volume: 𝑉𝑟𝑒𝑠 = 𝑉 \ 𝑉𝑜𝑏𝑠
• Frontier: observed map volume next to unobserved map volume
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Control Loop

Planner input for 

Autonomous 

Exploration

Source: [3]
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Related Work
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Sampling Based Explorer

• Bircher et al [4]

• 2016

• Volumetric and surface exploration 

• Arbitrary depth sensor

Other Types

• Optimization based

• Physics inspired

Frontier Based Explorer

• Dai et al [2]

• 2020

• Volumetric exploration

• Arbitrary depth sensor

Scene Completion Explorer

• Schmid et al [1]

• 2022

• Volumetric exploration

• RGBD image 
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Idea
Grow a geometric tree in free space, extract the branch with the highest gain and execute 
the first segment of that branch. Iteratively repeat this per timestep, i.e., receding horizon 
path planning.
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Methods I: Sampling Based Explorer [4]

Implementation Details

• Drone state: 𝜉 = (𝑥, 𝑦, 𝑧, 𝜓)𝑇

• Gain of node 𝑛𝑘:

• Geometric tree building: RRT

• Reinitialize with remainder of best branch

• Maximum depth 𝑁𝑚𝑎𝑥 and 𝑁𝑇𝑜𝑙

• Map 𝑀: octree representation

• Initialization procedure
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Idea
Sample candidates for the NBV from frontiers. A specific octree map representation 
allows for fast clustering of the frontier. Sparse raycasting and Shannon entropy is 
utilized to calculate the information gain of a candidate pose.
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Methods II: Frontier Based Explorer [2]

Implementation Details

• Drone state: 𝐱 = (𝑥, 𝑦, 𝑧, 𝜓)𝑇

• Map 𝑀: octree representation using supereight [8] 

and Morton codes for spatial indexing

• Two step sampling process for candidate poses 𝐱𝑖
• Shannon‘s entropy and utility of a candidate pose:

• Path planner to selected NBV: informed RRT*

• Optimize yaw for best path nodes from RRT*
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Idea
Deploy a neural network for incremental Scene Completion (SC). Utilize the SC in a 

hierarchical map to improve the mapping and the planning of the SC Explorer and 

therefore the exploration itself.
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Methods III: Scene Completion Explorer [1]

Implementation Details

• Drone state: 𝐱 = (𝑥, 𝑦, 𝑧, 𝜓)𝑇

• Sampling based approach for NBV [9]

• Map 𝑀: TSDF Map

• Path planning with and without SC layer

• Utilization of SC estimates for ray casting 

• Information gains based on measurements, SC 

layer or both, e.g.,

• Utility of nodes based on information gain and 

traversal time of path segments

Volume predicted 

by SC
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Results I
Task:

Explore a volume of 10 𝑥 20 𝑥 3 𝑚3, 

20 𝑥 20 𝑥 2.5 𝑚3, and 33 𝑥 31 𝑥 26 𝑚3

Planner

Sampling based planner vs frontier based

planner 

Takeaways

• Better scaling with higher map resolution

• Better global performance

• Anomaly in computation time for apartment and 

𝑟 = 0.1 𝑚 for frontier based planner 

Maze

Apartment

Introduction | Related Work | Methods | Results | Comments | Future Work

Sources: [2,4]



Performance gains using SC Explorer

• Mapping time improved with some decline of 

the mapping accuracy 

• Using SC in planning speeds up performance 

but safety is not guaranteed 

• Using SC for raycasting decreases 

performance of SC Explorer compared to 

oracle

Performance of SC Explorer 

depends on quality of prediction of 

the SC
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Results II
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Influence of Path Cost in Utility and on Final Performance

• Utility of Frontier based explorer

with estimated completion time of 

path 𝑇( 𝑊𝑖) assuming maximum linear speed

• Different performance for different 𝑣𝑚𝑎𝑥 due to 

influence of 𝑣𝑚𝑎𝑥 on utility of candidate poses

Curse of Dimensionality

• Frontier based: RRT* in 3 DoF

• Sampling based planner extension [5]

15Matthias Kreiner | 03695596

Comments I
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Comments II: Comparison of Methods 
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Frontier Based 

Explorer

Scene Completion 

Explorer

Sampling Based 

Explorer

Metric / 

Characteristic

Computational 

Complexity / 

Execution Times

+
Better performance then 

sampling based 

-
SC computational 

expensive ~ 1Hz

o
Worse performance with 

decreasing map resolution

Hyperparameters
• Weighting of path cost

• Horizon

• Weighting of path cost

• Sparse raycasting

• Probabilities for logs-

odd updates

• Confidence cut-off

• (SC neural network)

Information Gain
Only volume of unmapped 

visible voxels 

Mapped voxels with high 

uncertainty are also 

considered in entropy

SC as heuristic / prior for 

exploration

Exploration 

Speed

Safety No collisions reported No collisions reported
Optimistic planner/ naive 

TSDF not guaranteed safe

+ +o
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Dynamic Flight 

• 6 DoF Drone Model

• Optimization based path planning 

• Potential increase in performance since travel cost is more accurately estimated

Uncertainty aware SC

• Occupation probabilities and confidence cut-off hand tuned for SC

• Uncertainty aware SC for better performance including blocking raycasting

Safety / Reliability

• Classical TSDF map not safe due to artifacts / optimistic planning based on SC

• Multiple sensors / multi-resolution mapping pipeline

• Safety Layer / Reactive Avoidance [6] 

Dynamic Environments

• All approaches presented today assume static environments

• First Step: Object Centric Exploration [7]
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Future Work

Introduction | Related Work | Methods | Results | Comments | Future Work



[1] L. Schmid, M. N. Cheema, V. Reijgwart, R. Siegwart, F. Tombari, and C. Cadena, 

“SC-Explorer: Incremental 3D Scene Completion for Safe and Efficient Exploration 

Mapping and Planning,” pp. 1–18, 2022, [Online]. Available: 

http://arxiv.org/abs/2208.08307.

[2] A. Dai, S. Papatheodorou, N. Funk, D. Tzoumanikas, and S. Leutenegger, “Fast 

Frontier-based Information-driven Autonomous Exploration with an MAV,” in 2020 

IEEE International Conference on Robotics and Automation (ICRA), May 2020, pp. 

9570–9576, doi: 10.1109/ICRA40945.2020.9196707.

[3] Lecture Notes „Mobile Robotics“, Prof. Dr. Stefan Leutenegger, Technical University 

Munich, Wintersemester 2022/2023

[4] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart, “Receding horizon

path planning for 3D exploration and surface inspection,” Auton. Robots, vol. 42, no. 

2, pp. 291–306, Feb. 2018, doi: 10.1007/s10514-016-9610-0.

[5] C. Witting, M. Fehr, R. Behnemann, H. Oleynikova, and R. Siegwart, “History-Aware

Autonomous Exploration in Confined Environments Using MAVs,” in 2018 

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 

2018, pp. 1–9, doi: 10.1109/IROS.2018.8594502.

19Matthias Kreiner | 03695596

Sources

http://arxiv.org/abs/2208.08307


[6] H. Oleynikova, Z. Taylor, R. Siegwart, and J. Nieto, “Safe Local Exploration for

Replanning in Cluttered Unknown Environments for Microaerial Vehicles,” IEEE 

Robot. Autom. Lett., vol. 3, no. 3, pp. 1474–1481, Jul. 2018, doi: 

10.1109/LRA.2018.2800109.

[7] S. Papatheodorou, N. Funk, D. Tzoumanikas, C. Choi, B. Xu, and S. Leutenegger, 

“Finding Things in the Unknown: Semantic Object-Centric Exploration with an MAV,” 

Proc. - IEEE Int. Conf. Robot. Autom., vol. 2023-May, no. Icra, pp. 3339–3345, 

2023, doi: 10.1109/ICRA48891.2023.10160490.

[8] E. Vespa, N. Nikolov, M. Grimm, L. Nardi, P. H. J. Kelly, and S. Leutenegger, 

“Efficient octree-based volumetric SLAM supporting signed-distance and occupancy

mapping,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 1144–1151, Apr. 

2018.

[9] L. Schmid, M. Pantic, R. Khanna, L. Ott, R. Siegwart, and J. Nieto, “An efficient

sampling-based method for online informative path planning in unknown

environments,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1500–1507, 

April 2020

20Matthias Kreiner | 03695596

Sources



21Matthias Kreiner | 03695596

Additional Slides: Results [4]

Task:

Explore a volume of 50 𝑥 26 𝑥 14 𝑚3

Planner

Sampling based planner vs Frontier based 

planner from 2002 

Metric
Sampling 

based

Frontier 

based

𝑡𝑡𝑜𝑡 𝟒𝟑. 𝟖 𝒎𝒊𝒏 1670.1 𝑚𝑖𝑛

𝑡𝑐𝑜𝑚𝑝,𝑡𝑜𝑡 𝟗. 𝟒 𝒎𝒊𝒏 1660.4 𝑚𝑖𝑛

ҧ𝑡𝑐𝑜𝑚𝑝 𝟏. 𝟔 𝒔* 25.9 𝑚𝑖𝑛

* With a maximum of replanning time of 

23 𝑠 and map resolution of  r = 0.25 m
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Greedy, local planner

Sampling based Frontier based



Locality of sampling based approaches

• SC Explorer utilizes a sampling based planner 

• Greedy and local planner

• Good initial performance, then local minimum (  ) until new large area of unmapped space 

is found
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