

Master Seminar Robot Perception & Intelligence

Differentiable SLAM

Presenting Student: Kameel Amareen

Advisor: Sebastián Barbas Laina

Prof. Dr. Stefan Leutenegger

WS 2023-2024

Table of Contents

- Motivation Why Deep Learning ?
- Using Neural Implicit Representations
 - What are Neural Implicit Representations ?
 - NICE-SLAM
 - Methodology
 - Evaluation & Results
 - Limitations & Future Work
- End-to-End Pose Updates Regression & Feature Estimation
 - DROID-SLAM
 - Methodology
 - Evaluation & Results
 - Limitations & Future Work
- Final Comparison & Remarks
 - NICE-SLAM vs DROID on TUM-RGBD Dataset
 - Deep Learning + SLAM

Motivation - Why Deep Learning ?

- Current SLAM Systems lack robustness [1]:
 - Lost Feature Tracks
 - Divergence in the Optimization algorithm
 - Accumulation of Drift
- Deep Learning can be leveraged in various forms:
 - End-to-End Pose Updates Regression & Feature Estimation [1]
 - Using Neural Implicit Representations [2][3]
 - Using learnt Features [4]

[1] Teed, Zachary, and Jia Deng. "Droid-slam: Deep visual slam for monocular, stereo, and rgb-d cameras." Advances in neural information processing systems 34 (2021): 16558-16569.
[2] Zhu, Zihan, et al. "Nice-slam: Neural implicit scalable encoding for slam." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.
[3] Sucar, Edgar, et al. "iMAP: Implicit mapping and positioning in real-time." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.
[4] Sarlin, Paul-Edouard, et al. "Superglue: Learning feature matching with graph neural networks." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020.

Using Neural Implicit Representations

What are Neural Implicit Representations ?

NeRF: Neural Radiance Fields [5]

- Encodes a dense continuous space representation
- Fills mapping gaps/Predicts unseen regions

пп

NICE-SLAM 2022: Neural Implicit Scalable Encoding for SLAM [2]

- Input: RGB-D Stream
- Hierarchical Scene Representation
 - Large Scene Mapping & Efficient Local Feature Updates
- Parallel Processes for Mapping & Tracking

Hierarchical Scene Representation

Enables Local Feature Updates, vital for efficient Large Scene Mapping

Mid & Fine Level Geometric Representation

$$\begin{split} o_{\mathbf{p}}^{1} &= f^{1}(\mathbf{p}, \phi_{\theta}^{1}(\mathbf{p})), \qquad \Delta o_{\mathbf{p}}^{1} = f^{2}(\mathbf{p}, \phi_{\theta}^{1}(\mathbf{p}), \phi_{\theta}^{2}(\mathbf{p})) \\ o_{\mathbf{p}} &= o_{\mathbf{p}}^{1} + \Delta o_{\mathbf{p}}^{1} \end{split}$$

Coarse Level Geometric Representation

$$o^0_{\mathbf{p}} = f^0(\mathbf{p},\phi^0_\theta(\mathbf{p}))$$

Color Representation

$$\mathbf{c}_{\mathbf{p}} = \mathbf{g}_{\omega}(\mathbf{p}, \psi_{\omega}(\mathbf{p}))$$

$\phi^0_ heta(\mathbf{p})$	$\phi^1_{ heta}(\mathbf{p})$	$\phi^2_{ heta}(\mathbf{p})$	Coarse, Mid & Fine Level Features
$o_{\mathbf{p}}^{0}$	$o^1_{\mathbf{p}}$	$\Delta o^1_{\mathbf{p}}$	Encoded Coarse, Mid and Residual Occupancies
f^0	f^1	f^2	Pretrained Occupancy Decoder MLPs
$\psi_{\omega}(\mathbf{p})$	\mathbf{g}_{ω}	$\mathbf{c_p}$	Color Features, Color Decoder & Color Value

Depth and Color Rendering

Ray-termination Probability Modeling

$$w_i^c = o_{\mathbf{p}_i}^0 \prod_{j=1}^{i-1} (1 - o_{\mathbf{p}_j}^0) \qquad \qquad w_i^f = o_{\mathbf{p}_i} \prod_{j=1}^{i-1} (1 - o_{\mathbf{p}_j})$$

Depth & Color Rendering

$$\hat{D}^{c} = \sum_{i=1}^{N} w_{i}^{c} d_{i}, \quad \hat{D}^{f} = \sum_{i=1}^{N} w_{i}^{f} d_{i}, \quad \hat{I} = \sum_{i=1}^{N} w_{i}^{f} \mathbf{c}_{i}.$$

Depth Variance along the Ray

$$\hat{D}_{var}^{c} = \sum_{i=1}^{N} w_{i}^{c} (\hat{D}^{c} - d_{i})^{2} \quad \hat{D}_{var}^{f} = \sum_{i=1}^{N} w_{i}^{f} (\hat{D}^{f} - d_{i})^{2}$$

 w^c_i Coarse Ray Termination Probability at point i w^f_i Fine Ray Termination Probability at point i

 $\hat{D}^c \ \hat{D}^f$ Depth of Rendered Coarse and Fine Rays $d_i \ \mathbf{c}_i$ Depth and Color of point i along Ray \hat{I} RGB value of Rendered Fine Ray

 \hat{D}^c_{var} Depth variance along Rendered Coarse Ray \hat{D}^f_{var} Depth variance along Rendered Fine Ray

Scene Mapping

Mapping Geometric Loss:

$$\mathcal{L}_g^l = \frac{1}{M} \sum_{m=1}^M \left| D_m - \hat{D}_m^l \right|, \quad l \in \{c, f\}.$$

Mapping Photometric Loss:

$$\mathcal{L}_p = \frac{1}{M} \sum_{m=1}^{M} \left| I_m - \hat{I}_m \right|$$

Mapping Loss Function:

$$\min_{\theta,\omega,\{\mathbf{R}_i,\mathbf{t}_i\}} (\mathcal{L}_g^c + \mathcal{L}_g^f + \lambda_p \mathcal{L}_p)$$

 $egin{array}{ccc} D_m & \hat{D}_m^l & \mbox{Measured and Rendered Depth images (L is either Coarse or Fine Level)} \ & I_m & \hat{I}_m & \mbox{Measured and Rendered RGB images} \end{array}$

Due to Hierarchical Feature Grid local feature updates is feasible:

- Geometry outside of View remain static
- Very Efficient

Camera Tracking

Tracking Geometric Loss:

$$\mathcal{L}_{g_var} = \frac{1}{M_t} \sum_{m=1}^{M_t} \frac{\left| D_m - \hat{D}_m^c \right|}{\sqrt{\hat{D}_{var}^c}} + \frac{\left| D_m - \hat{D}_m^f \right|}{\sqrt{\hat{D}_{var}^f}}.$$

Tracking Loss Function:

$$\min_{\mathbf{R},\mathbf{t}} \left(\mathcal{L}_{g_var} + \lambda_{pt} \mathcal{L}_p \right)$$

- Coarse features: short-range predictions of the scene geometry helpful in unobserved areas
- Robustness to Dynamic Objects: neglect pixels with high loss values

NICE-SLAM: Evaluation & Results

Results on Replica Dataset:

Results on Scannet Dataset (ATE cm):

	iMAP* [3]	NICE-SLAM
Mem. (MB)↓	1.04	12.02
Depth L1↓	7.64	3.53
Acc. ↓	6.95	2.85
Comp.↓	5.33	3.00
Comp. Ratio ↑	66.60	89.33

Scene ID	0000	0059	0106	0169	0181	0207	Avg.
iMAP* [3]	55.95	32.06	17.50	70.51	32.10	11.91	36.67
NICE-SLAM	8.64	12.25	8.09	10.28	12.93	5.59	9.63

Results on TUM-RGBD Dataset (ATE cm):

	fr1/desk	fr2/xyz	fr3/office
imap [3]	4.9	2.0	5.8
iMAP* [3]	7.2	2.1	9.0
NICE-SLAM	2.7	1.8	3.0
ORB-SLAM2 [7]	1.6	0.4	1.0

Computation & Runtime (Small Scenes):

	FLOPs [×10 ³]↓	Tracking [ms]↓	Mapping [ms]↓
iMAP [3]	443.91	101	448
NICE-SLAN	A 104.16	47	130

[2] Zhu, Zihan, et al. "Nice-slam: Neural implicit scalable encoding for slam." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2022.
[7] Mur-Artal, Raul, and Juan D. Tardós. "Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras." *IEEE transactions on robotics* 33.5 (2017): 1255-1262.

NICE-SLAM: Evaluation & Results

Results on Replica Dataset:

Robustness to Dynamic Objects:

Geometry Forecasting & Hole Filling:

[2] Zhu, Zihan, et al. "Nice-slam: Neural implicit scalable encoding for slam." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.
[3] Sucar, Edgar, et al. "iMAP: Implicit mapping and positioning in real-time." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.

NICE-SLAM: Limitations & Future Work

- Feature grid dimensions need to be tuned for good results
- Method does not perform Loop Closures
- Traditional Methods are still better performing at tracking
- Lacks Real-Time capability with large scenes, if lots of Optimization Iterations are required [8]

Other works building on NICE-SLAM [8]:

- Includes Motion Data via IMU into optimization
- Introduces a sphere bounded background model

End-to-End Pose Updates Regression & Feature Estimation

DROID-SLAM 2021:

Deep Visual SLAM for Monocular, Stereo & RGB-D Cameras [1]

Inputs Supported:

• Monocular, RGB-D & Stereo Streams

Main Idea:

• Regresses optical flow to define geometrical residuals for pose refinement

Optical Flow Estimation based on:

• RAFT [8] : Recurrent All-Pairs Field Transforms for Optical Flow

[1] Teed, Zachary, and Jia Deng. "Droid-slam: Deep visual slam for monocular, stereo, and rgb-d cameras." Advances in neural information processing systems 34 (2021): 16558-16569.
[8] Teed, Zachary, and Jia Deng. "Raft: Recurrent all-pairs field transforms for optical flow." Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16. Springer International Publishing, 2020.

RAFT - Optical Flow Regression [8]

General Concept

Flow Field Update Operator

Flow Field Update Operator

Input to ConvGRU:

- Flow Field
- Lookup Features
- Context Features

20

Dense Bundle Adjustment

Maps the set of flow revisions into a set of pose and pixel wise depth updates

$$\mathbf{E}(\mathbf{G}',\mathbf{d}') = \sum_{(i,j)\in\mathcal{E}} \left\| \mathbf{p}_{ij}^* - \Pi_c(\mathbf{G}'_{ij} \circ \Pi_c^{-1}(\mathbf{p}_i,\mathbf{d}'_i)) \right\|_{\Sigma_{ij}}^2 \qquad \Sigma_{ij} = \operatorname{diag} \mathbf{w}_{ij} \qquad \mathbf{G}'_{ij} \quad \mathbf{d}'_i \quad \text{Updated relative pose \& inverse depth}$$

• Norm is Mahalanobis Distance weighted by Confidence Map

Use Gauss Newton to solve for

 $\Delta \boldsymbol{\xi}, \Delta \mathbf{d}$ Pose Update in Log Space $\Delta \mathbf{d}$ Inverse Depth Update

Apply Update

$$\mathbf{G}^{(k+1)} = \operatorname{Exp}(\Delta \boldsymbol{\xi}^{(k)}) \circ \mathbf{G}^{(k)}, \qquad \mathbf{d}^{(k+1)} = \Delta \mathbf{d}^{(k)} + \mathbf{d}^{(k)}$$

Training

Removing Gauge Freedom

• Fix first two poses to the ground-truth poses of each training sequence

Training Videos (TartainAir Dataset)

- Optical Flow between covisible frame precomputed
- Sampling paths between 8px and 96px

Supervision

- L2 Optical Flow Loss
- Pose Loss

$$\mathcal{L}_{pose} = \sum_i || \operatorname{Log}_{SE3} (\mathbf{T}_i^{-1} \cdot \mathbf{G}_i) ||_2$$
 \mathbf{T}_i^{-1} Ground Truth Pose

SLAM System

Two Threads are running asynchronously

- Frontend:
 - New Frames in
 - Feature Extraction
 - Local Bundle Adjustment
- **RGB-D** Compatibility:
 - Penalizes squared distance between Predicted & GT Depth

Stereo Compatibility:

• Same system but doubles the frames and fixes relative pose between right and left frames in DBA

- Backend:
 - Global Bundle Adjustment over all frames

DROID: Evaluation & Results

TartanAir Hard Sequences - Showcases Robustness & Accuracy (ATE m)

Monocular	MH000	MH001	MH002	MH003	MH004	MH005	MH006	MH007	Avg
ORB-SLAM	1.30	0.04	2.37	2.45	Х	Х	21.47	2.73	-
DeepV2D	6.15	2.12	4.54	3.89	2.71	11.55	5.53	3.76	5.03
TartanVO	4.88	0.26	2.00	0.94	1.07	3.19	1.00	2.04	1.92
Ours	0.08	0.05	0.04	0.02	0.01	1.31	0.30	0.07	0.24

EuRoC - Generalizability to New Cameras (ATE m)

		MH01	MH02	MH03	MH04	MH05	V101	V102	V103	V201	V202	V203	Avg
/b.	DeepFactors	1.587	1.479	3.139	5.331	4.002	1.520	0.679	0.900	0.876	1.905	1.021	2.040
H	DeepV2D	0.739	1.144	0.752	1.492	1.567	0.981	0.801	1.570	0.290	2.202	2.743	1.298
ceb	DeepV2D (Tartan Air)	1.614	1.492	1.635	1.775	1.013	0.717	0.695	1.483	0.839	1.052	0.591	1.173
Ď	TartanVO ¹	0.639	0.325	0.550	1.153	1.021	0.447	0.389	0.622	0.433	0.749	1.152	0.680
	D3VO + DSO	-	-	0.08	-	0.09	-	-	0.11	-	0.05	0.19	-
	ORB-SLAM	0.071	0.067	0.071	0.082	0.060	0.015	0.020	Х	0.021	0.018	Х	
cal	DSO	0.046	0.046	0.172	3.810	0.110	0.089	0.107	0.903	0.044	0.132	1.152	0.601
ISSI	SVO	0.100	0.120	0.410	0.430	0.300	0.070	0.210	X	0.110	0.110	1.080	-
C	DSM	0.039	0.036	0.055	0.057	0.067	0.095	0.059	0.076	0.056	0.057	0.784	0.126
	ORB-SLAM3	0.016	0.027	0.028	0.138	0.072	0.033	0.015	0.033	0.023	0.029	X	-
	Ours (odometry only) Ours	0.163 0.013	0.121 0.014	0.242 0.022	0.399 0.043	0.270 0.043	0.103 0.037	0.165 0.012	0.158 0.020	0.102 0.017	0.115 0.013	0.204 0.014	0.186 0.022

DROID: Evaluation & Results

TUM-RGBD - Robustness to Rolling Shutter Artifacts, Motion Blur & Heavy Rotation (ATE m)

	360	desk	desk2	floor	plant	room	rpy	teddy	xyz	avg
ORB-SLAM2	X	0.071	X	0.023	X	X	X	X	0.010	-
ORB-SLAM3	X	0.017	0.210	X	0.034	X	X	X	0.009	-
DeepTAM	0.111	0.053	0.103	0.206	0.064	0.239	0.093	0.144	0.036	0.116
TartanVO	0.178	0.125	0.122	0.349	0.297	0.333	0.049	0.339	0.062	0.206
DeepV2D	0.243	0.166	0.379	1.653	0.203	0.246	0.105	0.316	0.064	0.375
DeepV2D (TartanAir)	0.182	0.652	0.633	0.579	0.582	0.776	0.053	0.602	0.150	0.468
DeepFactors	0.159	0.170	0.253	0.169	0.305	0.364	0.043	0.601	0.035	0.233
Ours	0.111	0.018	0.042	0.021	0.016	0.049	0.026	0.048	0.012	0.038

ETH3D-SLAM - RGB-D Performance

Method	AUC (train)	AUC (test)
BundleFusion	84.10	33.84
ElasticFusion	89.06	34.02
RFusion	17.37	51.94
DVO-SLAM	193.89	71.83
ORB-SLAM2	156.10	104.28
BAD-SLAM	280.05	153.47
Ours	340.42	207.79

DROID: Limitations & Future Work

- Compute Intensive & Low Resolution
 - Real-Time Operation with 2 3090 GPUs
 - EuRoC: 20 FPS @ 320x512
 - TUM-RGBD: 30 FPS @ 240x320
 - Both skipping every other frame
 - TartanAir: 8 FPS hence not realtime
- Did not study robustness against dynamic objects
- Incorporate Scene Semantics while Mapping

Final Comparison & Remarks

NICE-SLAM vs DROID on TUM-RGBD Dataset

Common Scenes (ATE cm):

Method	desk	xyz
NICE-SLAM	2.7	1.8
DROID-SLAM	1.8	1.2

NICE-SLAM

- Neural Implicit Representation
- Tracking not as good as Classical SLAM
- More-Efficient than predecessor
- Robustness to Dynamic Objects & Performs Hole Filling
- Not Real Time & Requires Feature Grid Tuning
- No Loop Closure

DROID

- Learns to Optimize
- Provides an Explicit Map Representation
- Tracking overperforms Classical SLAM
- High Computation Power needed

Deep Learning + SLAM

Final Remarks:

- On-going Hot Research Field
- Deep Learning Methods provide better Maps
- Doesn't ensure better tracking accuracy than Classical Methods

New Interesting Paper Suggestion:

• SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM [9]