ТШП

Learning-based Multi-modal Perception

Aleksandar Jevtić Seminar: Robot Perception and Intelligence Advisor: Dr. Jaehyung Jung Munich, 16th of January 2024

ТЛП

Introduction

Learning-based Multi-modal Perception

"The process of perception involves making useful **models of the environment** from a confusion mass of sensory input data".

- Semantic segmentation
- Object detection / tracking
- Pose estimation
- (...)

Introduction

Where do we need Machine Perception?

Many use relevant use cases, e.g.,

- Robotics
- Autonomous Vehicles
- Healthcare

Source: https://www.cnet.com/home/this-robot-isnt-going-to-replace-your-in-home-nurse-yet/ https://venturebeat.com/ai/waymos-autonomous-cars-have-driven-20-million-miles-on-public-roads/

ПП

Introduction

Learning-based Multi-modal Perception

"The term **multimodality** refers to an individual's use of **different modes** (i.e. channels of communication) for the purpose of conveying meaning.".

- RGB images
- Depth
 - dense
 - sparse (e.g. LiDAR)
- Thermal imaging

(non-structural)

- IMU
- Audio
- Language

Introduction

How does multimodality help?

- Better accuracy
- Robustness
 - Adverse conditions
 - Failure cases

ПΠ

Overview

- Introduction and Overview
- Related Work
- Method Descriptions and Results
 - Multi-modal curb detection
 - CMX and CMNeXt
 - Multi-modal knowledge expansion
- Personal Comments
- Future Work

Related Work

Cross-Modal Fusion

Source: J. Cao, H. Leng, D. Lischinski, D. Cohen-Or, C. Tu, and Y. Li, "ShapeConv: Shape-Aware Convolutional Layer for Indoor RGB-D Semantic Segmentation," ICCV, 2021.

X. Chen et al., "Bi-directional Cross-Modality Feature Propagation with Separation-and-Aggregation Gate for RGB-D Semantic Segmentation," ECCV, 2020.

ПΠ

Related Work

High-level: Leveraging RGB data and models

Related concept: Semi-supervised Learning

- Consistency regularization
 Small input and model perturbations → small output changes
 Additional loss term
- Pseudo-labeling

Teacher – Student Architecture Generation of labels for unlabeled data

Related Work

Curb Detection Methods with LiDAR

Segmentation in RGB to find Regions of Interest

in these ROIs: use engineered spatial features

Segmentation is learning-based, but not fusion!

Multi-modal curb detection and filtering

Sandipan Das^{1,2}, Navid Mahabadi², Saikat Chatterjee¹, Maurice Fallon³

¹ KTH EECS, Sweden. {sandipan, sach}@kth.se ² Scania, Sweden. {sandipan.das, navid.mahabadi}@scania.com ³ Oxford Robotics Institute, UK. mfallon@robots.ox.ac.uk

Multi-modal curb detection and filtering

Detection of curb points by unsupervised clustering

Multi-modal fusion of

- RGB
- LiDAR

Data collection vehicle

- 4 sensors
- varying FoVs

Detected curb features (blue) and ground truth (green)

Source: S. Das, N. Mahabadi, S. Chatterjee, and M. Fallon, "Multi-modal curb detection and filtering," *CoRR*, vol. abs/2205.07096, 2022.

Multi-modal curb detection and filtering

Detection of curb points by unsupervised clustering

Multi-modal fusion of

- RGB
- LiDAR

Data collection vehicle

- 4 sensors
- varying FoVs

Multi-modal Curb detection - Method

Curb segmentation on RGB

- EfficientNet
- Association with LiDAR

Unsupervised clustering

• DBSCAN (density-based)

Filtering

- RANSAC filtering
- Delaunay filtering

(a) Semantic segmentation results using our modified EfficientNet [18].

(b) Fused lidar point clouds from lidar sensors.

(c) Lidar point clouds (white points) overlaid on the segmented curb pixels.

(d) Curb semantics (blue points) with the fused point cloud.

Multi-modal Curb detection - Method

Curb segmentation on RGB

• EfficientNet

Association with LiDAR

Unsupervised clustering

• DBSCAN (density-based)

Filtering

- RANSAC filtering
- Delaunay filtering

(a) Semantic segmentation results using our modified EfficientNet [18].

(b) Fused lidar point clouds from lidar sensors.

(c) Lidar point clouds (white points) overlaid on the segmented curb pixels.

(d) Curb semantics (blue points) with the fused point cloud.

Multi-modal Curb detection - Results

Source: S. Das, N. Mahabadi, S. Chatterjee, and M. Fallon, "Multi-modal curb detection and filtering," *CoRR*, vol. abs/2205.07096, 2022.

Multi-modal Curb detection - Results

Manual segment-wise association						
No Clustering	Normalized L ₂ -Norm	# Detected Points				
RANSAC Filtering	27.659	9578				
Delaunay Filtering	19.947	6904				
Automatic segment-wise association						
Outlier Removal (RANSAC)	Chamfer Distance	# Detected Points				
Agglomerative Clustering	17.427	3489				
BIRCH	19.596	1351				
DBSCAN	17.220	5314				
OPTICS	18.370	7446				
Outlier Removal (Delaunay)	Chamfer Distance	# Detected Points				
Agglomerative Clustering	15.418	3924				
BIRCH	16.165	3492				
DBSCAN	14.753	6678				
OPTICS	15.870	4415				

Source: S. Das, N. Mahabadi, S. Chatterjee, and M. Fallon, "Multi-modal curb detection and filtering," *CoRR*, vol. abs/2205.07096, 2022.

CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation with Transformers

Jiaming Zhang*, Huayao Liu*, Kailun Yang*[†], Xinxin Hu, Ruiping Liu, and Rainer Stiefelhagen

J. Zhang, R. Liu, and R. Stiefelhagen are with Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.

- K. Yang is with Hunan University, Changsha 410082, China.
- H. Liu is with NIO, Shanghai 201804, China.
- X. Hu is with ByteDance Inc., Hangzhou 310000, China.
- *indicates equal contribution.
- [†]corresponding author. (E-Mail: kailun.yang@hnu.edu.cn.)

CMX: Cross-Modal Fusion for RGB-X

Unified fusion framework

RGB-X semantic segmentation

Attention mechanisms enable efficient fusion

Source: J. Zhang, H. Liu, K. Yang, X. Hu, R. Liu, and Rainer Stiefelhagen, "CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation With Transformers," IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 12, pp. 14679–14694, 2022.

Overall Framework

LayerMix Transformer (MiT)CM-FRMCross-modal feature rectificationFFMFeature fusion

- Source: E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo, "SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers," NeurIPS, 2021.
 - J. Zhang, H. Liu, K. Yang, X. Hu, R. Liu, and Rainer Stiefelhagen, "CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation With Transformers," IEEE Transactions on Intelligent Transportation Systems, 2022.

Overall Framework

LayerMix Transformer (MiT)CM-FRMCross-modal feature rectificationFFMFeature fusion

- Source: E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo, "SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers," NeurIPS, 2021.
 - J. Zhang, H. Liu, K. Yang, X. Hu, R. Liu, and Rainer Stiefelhagen, "CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation With Transformers," IEEE Transactions on Intelligent Transportation Systems, 2022.

Cross-modal feature rectification module (CM-FRM)

Source: J. Zhang, H. Liu, K. Yang, X. Hu, R. Liu, and Rainer Stiefelhagen, "CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation With Transformers," IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 12, pp. 14679–14694, 2022.

Feature fusion module (FFM)

Source: J. Zhang, H. Liu, K. Yang, X. Hu, R. Liu, and Rainer Stiefelhagen, "CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation With Transformers," IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 12, pp. 14679–14694, 2022.

Delivering Arbitrary-Modal Semantic Segmentation

 Jiaming Zhang^{1,*}, Ruiping Liu^{1,*}, Hao Shi³, Kailun Yang^{2,†}, Simon Reiß¹, Kunyu Peng¹, Haodong Fu⁴, Kaiwei Wang³, Rainer Stiefelhagen¹
 ¹Karlsruhe Institute of Technology, ²Hunan University, ³Zhejiang University, ⁴Beihang University

*Equal contribution.

[†]Corresponding author (e-mail: kailun.yang@hnu.edu.cn).

¹The DELIVER dataset and our code will be made publicly available at: https://jamycheung.github.io/DELIVER.html.

CMNeXt: Arbitrary-Modal Fusion

Extending CMX

- Multiple additional modalities
- Retains two-stream architecture

Synthetic dataset DeLiVER

- Depth
- Lidar
- Multiple Views
- Event

CMNeXt: Arbitrary-Modal Fusion

Extending CMX

- Multiple additional modalities
- Retains two-stream architecture

Synthetic dataset DeLiVER

- Depth
- LiDAR
- Multiple Views
- Event

CMX and CMNeXt - Results

CMX and CMNeXt - Results

(b) Results on MFNet.

Method	Modal mIoU		Method
SwinT [50]	RGB	49.0	ACNet [35]
SegFormer [80]	RGB	52.0	SGNet [9]
ACNet [35]	RGB-T	46.3	ShapeConv [5]
FuseSeg [66]	RGB-T	54.5	NANet [92]
ABMDRNet [96]	RGB-T	54.8	SA-Gate [11]
LASNet [41]	RGB-T	54.9	PGDENet [104]
FEANet [15]	RGB-T	55.3	TokenFusion [72]
MFTNet [101]	RGB-T	57.3	TransD-Fusion [78]
GMNet [103]	RGB-T	57.3	MultiMAE [2]
DooDLeNet [20]	RGB-T	57.3	Omnivore [25]
CMX (MiT-B2) [49]	RGB-T	58.2	CMX (MiT-B4) [49]
CMX (MiT-B4) [49]	RGB-T	59.7	CMX (MiT-B5) [49]
CMNeXt (MiT-B4)	RGB-T	59.9	CMNeXt (MiT-B4)

(c) Results on NYU Depth V2.

mIoU

48.3

51.1

51.3

52.3

52.4

53.7

54.2

55.5

56.0

56.8

56.3

56.9

56.9

Source: J. Zhang et al., "Delivering Arbitrary-Modal Semantic Segmentation," CVPR, 2023.

Multimodal Knowledge Expansion

Zihui Xue^{1,2}, Sucheng Ren^{1,3}, Zhengqi Gao^{1,4}, and Hang Zhao *^{5,1}

¹Shanghai Qi Zhi Institute, ²UT Austin
 ³South China University of Technology
 ⁴MIT, ⁵Tsinghua University

Multimodal Knowledge Expansion - MKE

Models need to be trained on data!

RGB

- Big field of research
- Many datasets
- Well-trained backbones

Multi-modal

- Some labeled datasets, lots of unlabeled data
- Not many pre-trained backbones

Multimodal Knowledge Expansion - MKE

Models need to be trained on data!

RGB

- Big field of research
- Many datasets
- Well-trained backbones

Multi-modal

- Some labeled datasets, lots of unlabeled data
- Not many pre-trained backbones

Transfer knowledge to different modes?

MKE - Method

Based on knowledge distillation

Teacher-Student architecture

- Teacher
 - unimodal
 - generates pseudo-labels
- Student
 - multi-modal
 - learns on pseudo-labels

Source: Z. Xue, S. Ren, Z. Gao, and H. Zhao, "Multimodal Knowledge Expansion," ICCV, 2021.

ТЛП

MKE - Method

Confirmation Bias

Student should not strictly confirm to Teacher's pseudo-labels!

Solution \rightarrow Loss term

M

(like consistency regularization in SSL)

$$\theta_s^{\star} = \underset{\theta_s}{\operatorname{argmin}} (\mathcal{L}_{pl} + \gamma \mathcal{L}_{reg})$$

$$\mathcal{L}_{pl} = \frac{1}{M} \sum_{i=1}^{M} l_{cls}(\tilde{\mathbf{y}}_i, \mathbf{f}_s(\mathbf{x}_i^{\alpha}, \mathbf{x}_i^{\beta}; \theta_s)) \qquad f_s(\cdot)$$
$$T(\cdot)$$

$$\mathcal{L}_{reg} = \sum_{i=1}^{M} l_{reg} [\mathbf{f}_s(\mathbf{x}_i^{\alpha}, \mathbf{x}_i^{\beta}; \theta_s), \mathcal{T}(\mathbf{f}_s(\mathbf{x}_i^{\alpha}, \mathbf{x}_i^{\beta}; \theta_s))]$$

- $l_{cls}(\cdot)$ Cross-entropy loss
- $l_{reg}(\cdot)$ Distance metric (L2)
- $f_s(\cdot)$ Student model
 - Transformation on student model (i.e. input or model perturbation)

Source: Z. Xue, S. Ren, Z. Gao, and H. Zhao, "Multimodal Knowledge Expansion," ICCV, 2021.

MKE - Results

Method	Train data			Test mIoU
Method	mod	D_l	D_u	(%)
UM teacher	rgb	\checkmark		44.15
Naive student [10]	rgb		\checkmark	46.13
NOISY student [44]	rgb	\checkmark	\checkmark	47.68
Gupta <i>et al</i> . [15]	rgb, d		\checkmark	45.65
CMKD [49]	rgb, d		\checkmark	45.25
MM student (no reg)	rgb, d		\checkmark	46.14
MM student (ours)	rgb, d		\checkmark	48.88

Table 4: Results of semantic segmentation on NYU Depth V2. rgb and d denote RGB images and depth images.

MKE - Results

Methods	Train data			Accuracy (%)	
	mod	D_l	\tilde{D}_u	val	test
UM teacher	i	\checkmark		79.67	80.33
UM student	i		\checkmark	79.01	77.79
NOISY student [44]	i	\checkmark	\checkmark	82.54	83.09
MM student (no reg)	i, a		\checkmark	88.73	89.28
MM student (ours)	i, a		\checkmark	90.61	91.38
MM student (sup)	$\overline{i}, \overline{a}$		*	97.46	97.35

Table 3: Results of emotion recognition on RAVDESS. *mod*, *i* and *a* denote modality, images and audios, respectively. Data used for training each method is listed. \star means that the MM student (sup) is trained on true labels instead of pseudo labels in \tilde{D}_u .

Personal Comments

Multi-modal curb detection

- Unimodal Segmentation
- Simple unsupervised fusion in pipeline
- No interaction / end-to-end learning!

CMX and CMNeXt

- Unified fusion framework
- *(close to)* SOTA, even comparing to specialized models
- only image-like formats no sparse data (LiDAR!)

ТЛП

Personal Comments

Multi-modal knowledge expansion

- Exciting (and surprising) results
- however very theoretical
- still a young field of research

ТЛП

Future Work

Leverage RGB knowledge in SOTA

- Starting point: Multi-modal Knowledge Expansion
- Train SOTA multi-modal model
- Student-teacher architecture
- Improvements?

Future Work

Support of different representations for modalities

- for fully unified multi-modal framework
- Image-like data, point cloud, non-structural (Audio, Language, ...)
- no conversion / loss of structure necessary

even further:

Shared representation between modalities

• Recent advance \rightarrow ImageBind

ШП

Thank you for listening! Any Questions?